• Title/Summary/Keyword: meteorology classification

Search Result 45, Processing Time 0.036 seconds

Land Suitability Assessment by Combining Classification Results by Climate and Soil Information Using the Most Limiting Characteristic Method in the Republic of Korea (기후 및 토양 정보에서 최대저해인자법을 이용한 재배적지 구분의 통합에 관한 연구)

  • Kim, Hojung;Shim, Kyomoon;Hyun, Byungkeun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • Land suitability assessment for apples and pears was conducted with soil and climate information in South Korea. In doing so, we intended to preserve land and increase the productivity by providing valuable information regarding where more suitable areas for apples or pears are located. We used soil classification driven by soil environmental information system developed by National Institute of Agricultural Science, RDA, and also used climate classification in digital agro-climate map database for which is made by National Institute of Horticultural and Herbal Science. We combined both soil and climate classification results using a most-limiting characteristic method. The combined results showed very similar patterns with the results by classification based on soil information. Such results seem to come from the fact that the classification results by soil relatively lower than those by climate information. The results by soil classification seem to be too downgraded and checking if the final classification ranges in soil are reasonably made is strongly required. Although the most limiting characteristic method had been used widely in land suitability assessment, adapting the method based on results by soil and climate can be influenced by one downgraded factor. Therefore, alternative ways should be carefully considered for increasing the accuracy.

Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea (제주 감귤 과수원에서의 이슬지속시간 예측 모델 평가)

  • Park, Jun Sang;Seo, Yun Am;Kim, Kyu Rang;Ha, Jong-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.262-276
    • /
    • 2018
  • Models to predict Leaf Wetness Duration (LWD) were evaluated using the observed meteorological and dew data at the 11 citrus orchards in Jeju, South Korea from 2016 to 2017. The sensitivity and the prediction accuracy were evaluated with four models (i.e., Number of Hours of Relative Humidity (NHRH), Classification And Regression Tree/Stepwise Linear Discriminant (CART/SLD), Penman-Monteith (PM), Deep-learning Neural Network (DNN)). The sensitivity of models was evaluated with rainfall and seasonal changes. When the data in rainy days were excluded from the whole data set, the LWD models had smaller average error (Root Mean Square Error (RMSE) about 1.5hours). The seasonal error of the DNN model had the similar magnitude (RMSE about 3 hours) among all seasons excluding winter. The other models had the greatest error in summer (RMSE about 9.6 hours) and the lowest error in winter (RMSE about 3.3 hours). These models were also evaluated by the statistical error analysis method and the regression analysis method of mean squared deviation. The DNN model had the best performance by statistical error whereas the CART/SLD model had the worst prediction accuracy. The Mean Square Deviation (MSD) is a method of analyzing the linearity of a model with three components: squared bias (SB), nonunity slope (NU), and lack of correlation (LC). Better model performance was determined by lower SB and LC and higher NU. The results of MSD analysis indicated that the DNN model would provide the best performance and followed by the PM, the NHRH and the CART/SLD in order. This result suggested that the machine learning model would be useful to improve the accuracy of agricultural information using meteorological data.

A Simple Method for Classifying Land Cover of Rice Paddy at a 1 km Grid Spacing Using NOAA-AVHRR Data (NOAA-AVHRR 자료를 이용한 1 km 해상도 벼논 피복의 간이분류법)

  • 구자민;홍석영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • Land surface parameterization schemes for atmospheric models as well as decision support tools for ecosystem management require a frequent updating of land cover classification data for regional to global scales. Rice paddies have not been treated independently from other agricultural land classes in many classification systems, despite their atmospheric and ecological significance. A simple but improved method over conventional land cover classification schemes for rice paddy is suggested. Normalized difference vegetation index (NDVI) was calculated for the land area of South Korea at a 1km by 1 km resolution from the visible and the near-infrared channel reflectances of NOAA-AVHRR (Advanced Very High Resolution Radiometer). Monthly composite images of daily maximum NDVI were prepared for May and August, and used to classify 4 major land cover classes : urban, farmland, forests and water body. Among the pixels classified as "forests" in August, those classified as "water body" in May were assigned a "rice paddy" class. The distribution pattern of "rice paddy" pixels was very similar to the reported rice acreage of 1,455 Myons, which is the smallest administrative land unit in Korea. The correlation coefficient between the estimated and the reported acreage of Myons was 0.7, while 0.5 was calculated from the USGS classification.calculated from the USGS classification.

  • PDF

Study on the Estimation of Frost Occurrence Classification Using Machine Learning Methods (기계학습법을 이용한 서리 발생 구분 추정 연구)

  • Kim, Yongseok;Shim, Kyo-Moon;Jung, Myung-Pyo;Choi, In-tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.86-92
    • /
    • 2017
  • In this study, a model to classify frost occurrence and frost free day was developed using the digital weather forecast data provided by Korea Meteorological Administration (KMA). The minimum temperature, average wind speed, relative humidity, and dew point temperature were identified as the meteorological variables useful for classification frost occurrence and frost-free days. It was found that frost-occurrence date tended to have relatively low values of the minimum temperature, dew point temperature, and average wind speed. On the other hand, relatively humidity on frost-free days was higher than on frost-occurrence dates. Models based on machine learning methods including Artificial Neural Network (ANN), Random Forest(RF), Support Vector Machine(SVM) with those meteorological factors had >70% of accuracy. This results suggested that these models would be useful to predict the occurrence of frost using a digital weather forecast data.

Optimal Weather Variables for Estimation of Leaf Wetness Duration Using an Empirical Method (결로시간 예측을 위한 경험모형의 최적 기상변수)

  • K. S. Kim;S. E. Taylor;M. L. Gleason;K. J. Koehler
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2002
  • Sets of weather variables for estimation of LWD were evaluated using CART(Classification And Regression Tree) models. Input variables were sets of hourly observations of air temperature at 0.3-m and 1.5-m height, relative humidity(RH), and wind speed that were obtained from May to September in 1997, 1998, and 1999 at 15 weather stations in iowa, Illinois, and Nebraska, USA. A model that included air temperature at 0.3-m height, RH, and wind speed showed the lowest misidentification rate for wetness. The model estimated presence or absence of wetness more accurately (85.5%) than the CART/SLD model (84.7%) proposed by Gleason et al. (1994). This slight improvement, however, was insufficient to justify the use of our model, which requires additional measurements, in preference to the CART/SLD model. This study demonstrated that the use of measurements of temperature, humidity, and wind from automated stations was sufficient to make LWD estimations of reasonable accuracy when the CART/SLD model was used. Therefore, implementation of crop disease-warning systems may be facilitated by application of the CART/SLD model that inputs readily obtainable weather observations.

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area (Landsat TM 화상을 이용한 당진군 일원의 논면적 추정)

  • 홍석영;임상규;이규성;조인상;김길웅
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.5-15
    • /
    • 2001
  • For estimating paddy field area with Landsat TM images, two dates, May 31, 1991 (transplanting stage) and August 19, 1991 (heading stage) were selected by the data analysis of digital numbers considering rice cropping calendar. Four different estimating methods (1) rule-based classification method, (2) supervised classification(maximum likelihood), (3) unsupervised classification (ISODATA, No. of class:15), (4) unsupervised classification (ISODATA, No. of class:20) were examined. Paddy field area was estimated to 7291.19 ha by non-classification method. In comparison with topographical map (1:25,000), accuracy far paddy field area was 92%. A new image stacked by 10 layers, Landsat TM band 3,4,5, RVI, and wetness in May 31,1991 and August 19,1991 was made to estimate paddy field area by both supervised and unsupervised classification method. Paddy field was classified to 9100.98 ha by supervised classification. Error matrix showed 97.2% overall accuracy far training samples. Accuracy compared with topographical map was 95%. Unsupervised classifications by ISODATA using principal axis. Paddy field area by two different classification number of criteria were 6663.60 ha and 5704.56 ha and accuracy compared with topographical map was 87% and 82%. Irrespective of the estimating methods, paddy fields were discriminated very well by using two-date Landsat TM images in May 31,1991 (transplanting stage) and August 19,1991 (heading stage). Among estimation methods, rule-based classification method was the easiest to analyze and fast to process.

  • PDF

Classification of Agro-climatic zones in Northeast District of China (중국 동북지역의 농업기후지대 구분)

  • Jung, Myung-Pyo;Hur, Jina;Park, Hye-Jin;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • This study was conducted to classify agro-climatic zones in Northeast district of China. For agro-climatic zoning, monthly mean temperature and precipitation data from Global Modeling and Assimilation Office (GMAO) of National Aeronautics and Space Administration (NASA, USA) between 1979 and 2010 (http://disc.sci.gsfc.nasa.gov/) were collected. Altitude and vegetation fraction of East Asia from Weather Research and Forecasting (WRF) were also used to classify them. The criteria of agro-climatic classification were altitude (200 m, between 200-800 m, 800 m), vegetation fraction (60%), annual mean temperature ($0^{\circ}C$), temperature in the hottest month ($22^{\circ}C$), and annual precipitation (700 mm). In Northeast district of China, mean annual temperature, annual precipitation, and solar radiation were $3.4^{\circ}C$, 613.2 mm, and $4,414.2MJ/m^2$ between 2009 and 2013, respectively. Twenty-two agro-climatic zones identified in Northeast district of China by metrics classification method, from which the map of agro-climatic zones for Northeast district of China was derived. The results could be useful as information for estimating agro-meteorological characteristics and predicting crop development and crop yield of Northeast district of China as well as those of North Korea.

Analysis of Burn Severity in Large-fire Area Using SPOT5 Images and Field Survey Data (SPOT5영상과 현장조사자료를 융합한 대형산불지역의 피해강도 분석)

  • Won, Myoungsoo;Kim, Kyongha;Lee, Sangwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.114-124
    • /
    • 2014
  • For classifying fire damaged areas and analyzing burn severity of two large-fire areas damaged over 100 ha in 2011, three methods were employed utilized supervised classification, unsupervised classification and Normalized Difference Vegetation Index (NDVI). In this paper, the post-fire imageries of SPOT were used to compute the Maximum Likelihood (MLC), Minimum Distance (MIN), ISODATA, K-means, NDVI and to evaluate large-scale patterns of burn severity from 1 m to 5 m spatial resolutions. The result of the accuracy verification on burn severity from satellite images showed that average overall accuracy was 88.38 % and the Kappa coefficient was 0.8147. To compare the accuracy between burn severity and field survey at Uljin and Youngduk, two large fire sites were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. The burn severities of the study areas were estimated by analyzing burn severity (BS) classes from SPOT images taken one month after the occurrence of the fire. The applicability of composite burn index (CBI) was validated with a correlation analysis between field survey data and burn severity classified by SPOT5, and by their confusion matrix. The result showed that correlation between field survey data and BS by SPOT5 were closely correlated in both Uljin (r = -0.544 and p<0.01) and Youngduk (r = -0.616 and p<0.01). Thus, this result supported that the proposed burn severity analysis is an adequate method to measure burn severity of large fire areas in Korea.