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ABSTRACT

Sets of weather variables for estimation of LWD were evaluated using CART(Classification And
Regression Tree) models. Input variables were sets of hourly observations of air temperature at 0.3-m and
1.5-m height, relative humidity(RH), and wind speed that were obtained from May to September in 1997,
1998, and 1999 at 15 weather stations in Iowa, Illinois, and Nebraska, USA. A model that included air
temperature at 0.3-m height, RH, and wind speed showed the lowest misidentification rate for wetness.
The model estimated presence or absence of wetness more accurately (85.5%) than the CART/SLD model
(84.7%) proposed by Gleason et al. (1994). This slight improvement, however, was insufficient to justify the
use of our model, which requires additional measurements, in preference to the CART/SLD model. This
study demonstrated that the use of measurements of temperature, humidity, and wind from automated
stations was sufficient to make LWD estimations of reasonable accuracy when the CART/SLD model was
used. Therefore, implementation of crop disease-warning systems may be facilitated by application of the
CART/SLD model that inputs readily obtainable weather observations.
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1. INTRODUCTION

Leaf wetness duration(LWD) is a key environmental
parameter for assessing the likelihood of outbreaks of
many economically important crop diseases (e.g., Timmer
et al., 2000; Carisse et al., 2000). Consequently, LWD
estimates are frequently used as inputs for disease-
warning systems, which advise growers on efficient
timing of fungicide sprays or other management tactics
(Gleason, 2000). Even though electronic sensors can
measure LWD indirectly, estimating it with models
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may be more convenient since models free growers
from the need to install and maintain the sensors and
data loggers.

Wetness on a leaf can be caused by irrigation, mist,
rain, guttation, or dew. Dew duration has been modeled
using energy balance equations or empirical approaches
(Pedro and Gillespie, 1982a, 1982b; Gleason et al.,
1994). Pedro and Gillespie (1982a, 1982b) built a model
utilizing energy balance theory that estimated LWD
during dew period within 1h per night. Empirical
models that used statistical procedures, such as
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CART(Classification and Regression Tree), are also
able to estimate dew-derived LWD within 1 h per night
(Gleason et al., 1994).

When an empirical approach is used to build a LWD
model, a key step is to determine which variables
should be included in the model. In general, input
variables of empirical models have been selected from
the variables monitored at conventional weather stations,
such as air temperature, RH, and wind speed (Huber
and Gillespie, 1992). However, energy balance analysis
concerning thermal radiation on a surface suggests that
cloud cover has an important influence on dew
formation, which is a key component of LWD. Air
temperature at the crop canopy level may also influence
LWD because dew is a by-product of heat exchange
near the canopy. Although these variables may be
useful for accurate estimation of LWD, they are seldom
available from standard weather stations. Few empirical
LWD estimation models, therefore, have used either of
these variables. In this study, models were developed
using air temperature near the surface and cloud cover
for estimation of LWD to find an optimal set of weather
variables with CART technique.

2. MATERIALS AND METHODS

2.1. Data acquisition

Hourly measurements of air temperature, RH, and
wind speed were collected from May to September in
1997, 1998, and 1999 at 15 sites in Iowa (IA), Iltinois
(IL), and Nebraska (NE), USA (Fig. 1). Wind speed
was measured at a height of 3 m (IA and NE) or 10 m
(IL). Air temperature and RH were measured at a
height of 1.5 m. A thermocouple thermometer (Model
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Fig. 1. Locations where wetness was measured from 1997
to 1999 (May-September). Data from the sites indicated by
triangles, squares, and circles were used as training, validation,
and prediction sets, respectively.

107, Campbell Scientific) was installed to measure air
temperature at 0.3-m height, the same level as the
wetness sensors. Cloud cover estimates for each site
were obtained for 1999 from SkyBit, Inc. (Bellefonte,
PA).

Leaf wetness was measured using electrical wetness
sensors (Model 237, Campbell Scientific, Logan, UT)
deployed 0.3 m above managed turfgrass. Each sensor
was mounted on the end of a segment of PVC pipe and
deployed facing north at an angle of 45° to horizontal.
The sensor surface was painted with latex paint in order
to increase sensitivity to small water droplets and to
approximate the emissivity of plant leaves (Davis and
Hughes, 1970). The sensors were oven-dried overnight
to remove moisture from the paint. Wetness sensors
were interrogated by data loggers every 5 min, and
hourly wetness data were summarized as the proportion
of an hour when the sensor was wet. An hour was
scored as 0 (“dry hour”) when the sensor was wet for
<30 min and 1 (“wet hour”) when the sensor was wet
for >30 min.

2.2. Model development and validation

Air temperature at 0.3-m and 1.5-m heights, RH,
wind speed, dew point depression, and cloud cover
were used as input variables to build LWD estimation
models for the dew-eligible period (20:00 to 9:00 the
next morning). A classification and regression tree
(CART) technique (Breiman et al., 1984) was used with
S-plus (Math Soft Inc., Cambridge, MA; Venables and
Ripley, 1997). The CART modeling consisted of three
consecutive steps: growing, validation, and pruning. Data
sets from randomly selected sites (Fig. 1) used for the
growing and validation steps will be referred to as the
training and validation data sets, respectively. Four
trees were grown from training data, distinguished by
whether or not either rainfall or cloud cover was included
(Table 1). Due to the lack of cloud cover estimates in
1997 and 1998, trees that used cloud cover as a potential
variable were fit only to the training 1999 data.

Table 1. Data sets prepared for CART analysis

Data  Years Days with

Set  Included measured rain® Cloud Cover
A 1997-1999  Included No cloud data included
B 1999 Included  Cloud data from SkyBit
C  1997-1999  Excluded- No cloud data included
D 1999 Excluded Cloud data from SkyBit
a =

0.25 mm/day
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Fig. 2. Plot to determine optimal size of a tree in set A.
Data from the training set were used for validation. Smaller
deviance values (Y axis) indicate better prediction of response
variable, which is either wetness or dryness in the data. The
size of the tree, which is the number of terminal nodes, is
give by the X axis.

The first step in fitting a tree to the training data is to
generate a very large tree. Using this very large tree to
predict LWD for every hour in the validation data set,
a tree size, the number of nodes, that provides the most
accurate predictions, is selected. As the size of the tree
fit to the training data is increased, it eventually begins
to react to random variation. At that point, predictions
for the validation data become less accurate. This is
shown in Fig. 2, where including the first 15 nodes in
the tree fit to the training data provides reasonable
accuracy. Only slight improvement is obtained by
increasing model complexity to 38 nodes. After the
optimal size for a tree was determined, the tree was
pruned to the indicated number of nodes. The predictions
for the validation data are used to estimate misclas-
sification rates (i.e., number of wet hours per day

misclassified as dry or vice versa) for hours of leaf
wetness.

The misclassification rate was used to select the best
pruned trees for each of the four validation data sets. For
each data set, the tree with the smallest misclassification
rate was designated as the “Model” given the name of
the data set. For analysis of model performance,
measurements from wetness sensors were assumed to
be “true”, and deviations of model estimates from
wetness sensor measurement were considered to be
errors. The Critical Success Index(CSI) (Schaefer, 1990)
was used to evaluate accuracy in predicting wetness
events by calculating the proportion of hours in which
the occurrence of wetness was estimated correctly as a
proportion of the total hours in which either sensors or
the model identified wetness. The model’s no-alarm
rate (proportion of hours in which wetness was measured
by sensors but not estimated) and false-alarm rate
(proportion of hours in which wetness was estimated
but not measured) were calculated daily and averaged
over the study period. Differences between measured
and model-estimated LWD for the dew-eligible period
were averaged and designated as the Mean Error(ME).
Overall accuracy, defined as the percentage of hours in
which each model identified wetness or dryness correctly
for a night, was calculated over the study period.

3. RESULTS AND DISCUSSION

3.1. Model selection

The input variables selected for the most accurate
model are shown in Table 2 for each data set. Air
temperature at 0.3-m height was an input variable in
each model. Wind speed and dew point depression
(DPD) were selected in the analyses of the 1997-1999
data sets for which no cloud cover information was
available. Cloud cover was also included in each analysis

Table 2. Models that provided the lowest misclassification rate for each data set

Dsitta Total hours Input variables (Size?) False alarm rate® Misclassification rate®
A 18,432 RH, WSPD¢, ATMP30° (15) 0.171 0.207
B 7,476 RH, ATMP30, Cover? (20) 0.248 0.205
C 13,260 RH, WSPD, ATMP30, DPD? (15) 0.213 0.211
D 5,736 RH, ATMP30, Cover (15) 0.348 0.191

a. Number of terminal nodes

b. Proportion of hours that were not scored as wet by wetness sensors but out of the hours scored as wet by the model.
c. Proportion of hours in which a model identified incorrectly either wetness or dryness.
d. WSPD, ATMP30, and Cover correspond to wind speed (m s, air temperature at the height of 0.3 m (°C), and cloud cover, respectively.
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of the 1999 data for which cloud cover information was
available.

Both models that included cloud cover among the
input variables classified wet hours more accurately on
nights in which rainfall was measured than nights in
which no rainfall was measured (data not shown). These
models, however, identified dry hours more correctly
than wet hours when nights with measured rainfall
were excluded from the data set; the remaining date
constituted 88% of the study period. Models that classified
dry hours more accurately than wet hours appeared to
be more accurate when all hours in the data set were
considered, because the data sets contained more dry

hours than wet hours. Those models, nevertheless, may
not be useful since, for disease warning applications,
accurate estimation of wetness duration is more important
than dryness duration. For example, Model D has the
lowest overall misclassification rate, which considers
both wet and dry, but has the highest false-alarm rate,
which is based on hours when wetness was predicted
by a model but not measured by the sensors.

3.2. Comparison of Model A with the CART/
SLD model

Model A was selected as the best model to compare

with the CART/SLD model because it had the lowest

Table 3. Accuracy in identifying either wet or dry hours in which wetness was measured during the hours 20:00-9:00

. Total Model A CART/SLD
Location
0y False alarm rate® No alarm rate®  CSI°® False alarm rate  No alarm rate CSI
Lewis, IA 2,580 0.172 0.072 0.424 0.137 0.091 0416
Crawfordsville, IA 3,696 0.121 0.058 0.653 0.113 0.072 0.638
Belleville, IL 3,300 0.218 0.018 0.634 0.200 0.030 0.624
Monmouth, IL 4,032 0.159 0.079 0.547 0.068 0.178 0.464
Red Cloud, NE 2,424 0.097 0.120 0.486 0.069 0.196 0.383
West Point, NE 2,388 0.046 0.083 0.704 0.023 0.163 0.608
All six sites 18,420 0.141 0.069 0.582 0.105 0.118 0.532

a. Proportion of hours in which sensors measured no wetness but the model estimated wetness.

b. Proportion of hours in which sensors measured wetness but the model estimated dryness.

¢. Critical Success Index. Proportion of hours in which the occurrence of wetness was estimated correctly as a proportion of the
total hours in which either sensors or the model identified wetness.
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Fig. 3. (a) The structure of the CART/SLD model. If either inequality 1 or 2 is met, the hour is classified as a wet hour
where Ty, is air temperature at 1.5 m (b) The structure of Model A.
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false alarm rate (Table 2). Higher CSI values indicated
that Model A identified wet hours more accurately than
the CART/SLD model (Table 3). The no-alarm rates
for Model A were lower than that of the CART/SLD
model for all sites. Overall, no-alarm rates were 0.069
and 0.118 for Model A and the CART/SLD model,
respectively. Model A, however, misclassified a higher
proportion of hours in which no wetness was measured,
resulting in higher false-alarm rates than CART/SLD.

Inclusion of air temperature at 0.3-m height may have
enabled Model A to identify dew periods at this height
more accurately than the CART/SLD model, which uses
air temperature at 1.5-m height, by accurately representing
the microenvironmental conditions under which dew
was likely to occur. When wetness was measured at
lower RH values, the difference between 0.3-m and 1.5-
m temperatures was relatively large (Fig. 4). During clear
and calm nights, when net radiation is usually negative,
the temperature of leaf or sensor surfaces is lower than
that of air. This favors dew formation by promoting
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Fig. 4. The mean temperature difference (AT) between 1.5 m
and 0.3 m heights under calm conditions {wind speed < 3 m/
sec) during dew-eligible period (20:00 to 9:00). Wetness was
measured at given relative humidity (RH) when AT was large.

condensation of water vapor on the surface, implying
that measuring air temperature near crop surfaces may
help to estimate LWD more accurately. In addition, air
temperature near the surface of leaves may provide a
more accurate representation of the thermal environment
of fungal spores on relatively low-canopy crops, such
as strawberries and melons, for use with disease-warning
systems (Huber and Gillespie, 1992).

The overall mean differences between measured and
estimated wetness duration were 0.9 h and -0.2 h per night
for Model A and the CART/SLD model, respectively
(Table 4). Some models based on energy balance have
reported <1 h/day error for LWD during dew-eligible
periods (Pedro and Gillespie, 1984). Variability of LWD
estimation, as indicated by the standard error of the mean
(SEM), differed little between the models. The CART/
SLD model estimated less LWD than Model A for all
six sites. Gleason et al. (1994) reported that the CART/
SLD model tended to underestimate dew duration in the
midwestern US by 0.8 h/day.

The relatively slight improvement in LWD estimation
accuracy provided by Model A compared to the CART/
SLD model suggests that use of air temperature, RH, and
wind speed with the CART/SLD model is operationally
preferable, since all of these inputs are obtainable from
standard weather stations, whereas Model A requires
canopy temperature data that are not routinely gathered.
Alternatively, it is also possible to make reasonably
accurate site-specific predictions of LWD for a chosen
locality or farm using the CART/SLD model with com-
mercially available, site-specific estimates for the input
variables (Kim et al., 2001). Linking the CART/SLD
model to site-specific weather data deserves further
attention as a convenient technique of providing LWD
data to drive disease-warning systems on high-value
crops.

Table 4. Mean error and accuracy for Model A and the CART/SLD model

) Mean Error* (h / night) Accuracy® (%)
Location Nights
Model A CART/SLD Model A CART/SLD
Lewis, IA 215 1.2 (0.24) 0.6 (0.23) 84.0 85.3
Crawfordsville, 1A 308 0.8 (0.16) 0.5(0.17) 87.7 87.4
Belleville, IL 275 2.4(0.17) 2.0(0.18) 84.2 83.4
Monmouth, IL 336 1.0 (0.21) -1.3(0.21) 82.3 82.5
Red Cloud, NE 202 -0.3 (0.24) -1.5(0.27) 86.7 84.0
West Point, NE 199 -0.5 (0.15) -1.7 (0.17) 89.6 86.6
All Stations 1,535 0.9 (0.10) -0.2 (0.11) 85.5 84.7

a. Mean of differences between model-estimated and measured (estimated - measured) LWD per day.
b. [Hours in which presence or absence of wetness estimated correctly/total hours in data set] < 100.
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4. CONCLUSIONS

An empirical model using air temperature at 0.3-m
height, wind speed, and RH identified wet hours during
the period 20:00 to 9:00 more accurately than the CART/
SLD model. Values of the Critical Success Index, which
indicate accuracy of identifying wet hours, were 0.582
and 0.532 for Model A and the CART/SLD model,
respectively. Model A, however, tended to misidentify
more dry hours as wet, resulting in little overall
improvement in LWD estimation accuracy. Mean errors
for Model A and the CART/SLD model were 0.9 h and
-0.2 h per night, respectively. This study demonstrated
that, using the CART/SLD model, routine measurements
of temperature, humidity, wind, and precipitation from
automated stations were sufficient for LWD estimation
within 1 h per night. Utilization of disease-warning
systems in agriculture may be facilitated by application
of the CART/SLD model that inputs readily obtainable
weather measurements or site-specific weather estimates.
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