Optimal Weather Variables for Estimation of Leaf Wetness Duration Using an Empirical Method

결로시간 예측을 위한 경험모형의 최적 기상변수

  • K. S. Kim (Department of Agronomy, Iowa State University) ;
  • S. E. Taylor (Department of Agronomy, Iowa State University) ;
  • M. L. Gleason (Department of Plant Pathology, Iowa State University) ;
  • K. J. Koehler (Department of Statistics, Iowa State University)
  • Published : 2002.03.01

Abstract

Sets of weather variables for estimation of LWD were evaluated using CART(Classification And Regression Tree) models. Input variables were sets of hourly observations of air temperature at 0.3-m and 1.5-m height, relative humidity(RH), and wind speed that were obtained from May to September in 1997, 1998, and 1999 at 15 weather stations in iowa, Illinois, and Nebraska, USA. A model that included air temperature at 0.3-m height, RH, and wind speed showed the lowest misidentification rate for wetness. The model estimated presence or absence of wetness more accurately (85.5%) than the CART/SLD model (84.7%) proposed by Gleason et al. (1994). This slight improvement, however, was insufficient to justify the use of our model, which requires additional measurements, in preference to the CART/SLD model. This study demonstrated that the use of measurements of temperature, humidity, and wind from automated stations was sufficient to make LWD estimations of reasonable accuracy when the CART/SLD model was used. Therefore, implementation of crop disease-warning systems may be facilitated by application of the CART/SLD model that inputs readily obtainable weather observations.

CART(Classification and Regression Tree) 모형을 이용해서 결로시간 예측에 필요한 기상변수들을 평가하였다. 입력 기상 변수들은 0.3m와 1.5m에서 측정된 기온, 상대습도, 풍속의 시간별 측정값으로서 이 관측 값들은 1997년부터 1999년 5월에서 9월 사이에 미국의 Iowa, Illinois 및 Nebraska주에 위치한 15개 자동 기상 관측소에서 관측된 것이다. 0.3 m에서 측정된 기온, 상대습도, 그리고 풍속을 이용해서 얻어진 모형이 가장 높은 결로시간의 예측 적중율(85.5%)을 보였으며, 이 모형은 Gleason 등(1994)의 CART/SLD 모형의 적중률(84.7%) 보다 다소 높았다. 그러나 새로운 변수를 추가한 경우에 정확도의 향상이 다소 있었으나 CART/SLD 모형을 대체할 정도는 아니었다. 따라서, 기온, 상대습도, 풍속들의 종관 기상관측값들을 입력변수로 사용하는 CART/SLD 모형이 종관 기상관측 자료 이외의 추가적인 자료를 필요로 하는 모형으로 결로시간을 예측하는 것보다 합리적일 것으로 보인다.

Keywords

References

  1. Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone, 1984: Classification and regression trees. Wadsworth, Monterey. 2-6.
  2. Carisse, O., G. Bourgeois, and J.A. Duthie, 2000: Influence of temperature and leaf wetness duration on infection of strawberry leaves by Mycosphaerella fragariae. Phytopathology 90, 1120-1125.
  3. Davis, D.R. and J.E. Hughes, 1970: A new approach to recording the wetting parameter by the use of electrical resistance sensors. Plant Disease Report 54, 474-479.
  4. Francl, L.J. and S. Panigrahi, 1997: Artificial neural network models of wheat leaf wetness. Agricultural and Forest Meteorology 88, 57-65.
  5. Gleason, M.L, S.E. Taylor, T.M. Loughin, and K.J. Koehler, 1994: Development and validation of an empirical model to estimate the duration of dew periods. Plant Disease 78, 1011-1016.
  6. Gleason, M.L., 2000: Disease-warning systems. In: Encyclopedia of Plant Pathology. Vol I. John Wiley & Sons. New York. 367-370.
  7. Huber, L. and T.J. Gillespie, 1992: Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology 30, 553-577.
  8. Kim, K.S., S.E. Taylor, M.L. Gleason and K.J. Koehler, 2002: A model to estimate site-specific estimation of wetness duration using a wind speed correction. Plant Disease 86, 179-185.
  9. Pedro, M.J. and T.J. Gillespie, 1982: Estimating dew duration. I. Utilizing micrometeorological data. Agricultural Meteorology 25, 283-296.
  10. Pedro, M.J. and T.J. Gillespie, 1982: Estimating dew duration. II. Utilizing standard weather station data. Agricultural Meteorology 25, 297-310.
  11. Schaefer, J.T., 1990: The critical success index as an indicator of warning skill. Weather and forecasting 5, 570-575.
  12. Timmer, L.W., H.M. Darhower, S.E. Zitko, T.L. Peever, A.M. Ibnez, and P.M. Bushong, 2000: Environmental factors affecting the severity of Alternaria brown spot of citrus and their potential use in timing fungicide applications. Plant Disease 84, 638-643.
  13. Venables, W.N. and B.D. Ripley, 1997: Tree-based models. Modern Applied Statistics with S-plus. (2nd ed.) Springer-Verlag, New York. 413-430.