• Title/Summary/Keyword: metamorphic HEMT

Search Result 45, Processing Time 0.027 seconds

Simulation Design of MHEMT Power Devices with High Breakdown Voltages (고항복전압 MHEMT 전력소자 설계)

  • Son, Myung-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.335-340
    • /
    • 2013
  • This paper is for the simulation design to enhance the breakdown voltage of MHEMTs with an InP-etchstop layer. Gate-recess and channel structures has been simulated and analyzed for the breakdown of the MHEMT devices. The fully removed recess structure at the drain side of MHEMT shows that the breakdown voltage enhances from 2 V to almost 4 V as the saturation current at gate voltage of 0 V is reduced from 90 mA to 60 mA at drain voltage of 2 V. This is because the electron-captured negatively fixed charges at the drain-side interface between the InAlAs barrier and the $Si_3N_4$ passivation layers deplete the InGaAs channel layer more and thus decreases the electron current passing the channel layer and thus the impact ionization in the channel become smaller. In addition, the replaced InGaAs/InP composite channel with the same thickness in the same asymmetrically recessed structure increases the breakdown voltage to 5 V due to the smaller impact ionization and mobility of the InP layer at high drain voltage.

Characteristics of MHEMT Devices Having T-Shaped Gate Structure for W-Band MMIC (W-Band MMIC를 위한 T-형태 게이트 구조를 갖는 MHMET 소자 특성)

  • Lee, Jong-Min;Min, Byoung-Gue;Chang, Sung-Jae;Chang, Woo-Jin;Yoon, Hyung Sup;Jung, Hyun-Wook;Kim, Seong-Il;Kang, Dong Min;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, we fabricated a metamorphic high-electron-mobility transistor (mHEMT) device with a T-type gate structure for the implementation of W-band monolithic microwave integrated circuits (MMICs) and investigated its characteristics. To fabricate the mHEMT device, a recess process for etching of its Schottky layer was applied before gate metal deposition, and an e-beam lithography using a triple photoresist film for the T-gate structure was employed. We measured DC and RF characteristics of the fabricated device to verify the characteristics that can be used in W-band MMIC design. The mHEMT device exhibited DC characteristics such as a drain current density of 747 mA/mm, maximum transconductance of 1.354 S/mm, and pinch-off voltage of -0.42 V. Concerning the frequency characteristics, the device showed a cutoff frequency of 215 GHz and maximum oscillation frequency of 260 GHz, which provide sufficient performance for W-band MMIC design and fabrication. In addition, active and passive modeling was performed and its accuracy was evaluated by comparing the measured results. The developed mHEMT and device models could be used for the fabrication of W-band MMICs.

A Study on Design and Fabrication of High Isolation W-band MIMIC Single-balanced Mixer (높은 격리도 특성의 W-밴드용 MIMIC 단일 평형 주파수 혼합기의 설계 및 제작 연구)

  • Yi, Sang-Yong;Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.48-53
    • /
    • 2007
  • In this paper, a high LO-RF isolation W-band MIMIC single-balanced mixer was designed and fabricated using a branch line coupler and a ${\lambda}/4$ transmission line. The W-band MIMIC single-balanced mixer was designed using the $0.1\;{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT diode. The fabricated MHEMT was obtained the cut-off frequency($f_T$) of 154 GHz and the maximum oscillation frequency($f_{max}$) of 454 GHz. The designed MIMIC single-balanced mixer was fabricated using $0.1\;{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the single-balanced mixer was 12.8 dB at an LO power of 8.6 dBm. P1 dB(1 dB compression point) of input and output were 5 dBm and -8.9 dBm, respectively. The LO-RF isolations of single-balanced mixer was obtained 37.2 dB at 94 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

Low Conversion Loss 94 GHz MHEMT MIMIC Resistive Mixer (낮은 변환손실 특성의 94 GHz MHEMT MIMIC Resistive 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Oh Jung-Hun;Baek Yong-Hyun;Kim Sung-Chan;Park Jung-Dong;Shin Dong-Hoon;Park Hyung-Moo;Park Hyun-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.61-68
    • /
    • 2005
  • In this paper, low conversion loss 94 GHz MIMIC resistive mixer was designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC's, was fabricated. The DC characteristics of MHEMT are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 189 GHz and the maximum oscillation frequency(fmax) is 334 GHz. A 94 GHz resistive mixer was fabricated using $0.1{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the 94 GHz resistive mixer was 8.2 dB at an LO power of 10 dBm. P1 dB(1 dB compression point) of input and output were 9 dBm and 0 dBm, respectively. LO-RF isolations of resistive mixer was obtained 15.6 dB at 94.03 GHz. We obtained in this study a lower conversion loss compared to some other resistive mixers in W-band frequencies.

W-Band MMIC chipset in 0.1-㎛ mHEMT technology

  • Lee, Jong-Min;Chang, Woo-Jin;Kang, Dong Min;Min, Byoung-Gue;Yoon, Hyung Sup;Chang, Sung-Jae;Jung, Hyun-Wook;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.549-561
    • /
    • 2020
  • We developed a 0.1-㎛ metamorphic high electron mobility transistor and fabricated a W-band monolithic microwave integrated circuit chipset with our in-house technology to verify the performance and usability of the developed technology. The DC characteristics were a drain current density of 747 mA/mm and a maximum transconductance of 1.354 S/mm; the RF characteristics were a cutoff frequency of 210 GHz and a maximum oscillation frequency of 252 GHz. A frequency multiplier was developed to increase the frequency of the input signal. The fabricated multiplier showed high output values (more than 0 dBm) in the 94 GHz-108 GHz band and achieved excellent spurious suppression. A low-noise amplifier (LNA) with a four-stage single-ended architecture using a common-source stage was also developed. This LNA achieved a gain of 20 dB in a band between 83 GHz and 110 GHz and a noise figure lower than 3.8 dB with a frequency of 94 GHz. A W-band image-rejection mixer (IRM) with an external off-chip coupler was also designed. The IRM provided a conversion gain of 13 dB-17 dB for RF frequencies of 80 GHz-110 GHz and image-rejection ratios of 17 dB-19 dB for RF frequencies of 93 GHz-100 GHz.

Analysis of issues in gate recess etching in the InAlAs/InGaAs HEMT manufacturing process

  • Byoung-Gue Min;Jong-Min Lee;Hyung Sup Yoon;Woo-Jin Chang;Jong-Yul Park;Dong Min Kang;Sung-Jae Chang;Hyun-Wook Jung
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.171-179
    • /
    • 2023
  • We have developed an InAlAs/InGaAs metamorphic high electron mobility transistor device fabrication process where the gate length can be tuned within the range of 0.13㎛-0.16㎛ to suit the intended application. The core processes are a two-step electron-beam lithography process using a three-layer resist and gate recess etching process using citric acid. An electron-beam lithography process was developed to fabricate a T-shaped gate electrode with a fine gate foot and a relatively large gate head. This was realized through the use of three-layered resist and two-step electron beam exposure and development. Citric acid-based gate recess etching is a wet etching, so it is very important to secure etching uniformity and process reproducibility. The device layout was designed by considering the electrochemical reaction involved in recess etching, and a reproducible gate recess etching process was developed by finding optimized etching conditions. Using the developed gate electrode process technology, we were able to successfully manufacture various monolithic microwave integrated circuits, including low noise amplifiers that can be used in the 28 GHz to 94 GHz frequency range.

Modification of CPW Pad Design for High fmax InGaAs/InAlAs Metamorphic High Electron Mobility Transistors (높은 $f_{max}$ 를 갖는 InGaAs/InAlAs MHEMT 의 Pad 설계)

  • Choi, Seok-Gyu;Lee, Bok-Hyung;Lee, Mun-Kyo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.599-602
    • /
    • 2005
  • In this paper, we have performed a study that modifies the CPW Pad configurations to improve an $f_{max}$ characteristic of metamorphic HEMT. To analyze the CPW Pad structures of MHEMT, we use the ADS momentum simulator developed by $Agilent^{TM}$. Comparing the employed structure (G/W = 40/100 m), the optimized structure (G/W = 20/25 m) of CPW MHEMT shows the increased $S_{21}$ by 2.5 dB, which is one of the dominant parameters influencing the $f_{max}$ of MHEMT. To compare the performances of optimized MHEMT with the employed MHEMT, DC and RF characteristics of the fabricated MHEMT were measured. In the case of optimized CPW MHEMT, the measured saturated drain current density and transconductance $(g_m)$ were 693 mA/mm and 647 mS/mm, respectively. RF measurements were performed in a frequency range of $0.1{\sim}110$ GHz. A high $S_{21}$ gain of 5.5 dB is shown at a millimeter-wave frequency of 110 GHz. Two kinds of RF gains, $h_{21}$ and maximum available gain (MAG), versus the frequency, and a cut-off frequency ($f_t$) of ${\sim}154$ GHz and a maximum frequency of oscillation ($f_{max}$) of ${\sim}358$ GHz are obtained, respectively, from the extrapolation of the RF gains for a device biased at a peak transconductance. An optimized CPW MHEMT structure is one of the first reports among fabricated 0.1 m gate length MHEMTs.

  • PDF

Study of Composite channel Structure of Metamorphic HEMT for the Improved Device Characteristics (기존의 MHEMT와 InP 합성 채널 MHEMT의 소자의 항복 특성 분석 및 비교 연구)

  • Choi, Seok-Gyu;Baek, Yong-Hyun;Han, Min;Bang, Seok-Ho;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we have performed the channel modification of the conventional MHEMT (metamorphic high electron mobility transistor) to improve the breakdown characteristics. The Modified channel consists of the InxGal-xAs channel and the InP sub channel instead of the InxGa1-xAs channel. Since InP has the lower impact ionization coefficient in comparison with In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. We have investigated the breakdown mechanism and the RF characteristics for the conventional and the InP- composite channel MHEMTs. From the measurement results, we have obtained the enhanced on and off-state breakdown voltages of 2.4 and 5.7 V, respectively. Also, the increased RF characteristics have brought about the decreased output conductance for the InP-composite channel MHEMT. The cut-off frequency (fT) and the maximum oscillation frequency (fmax) for the InP-composite Channel MHEMT were 160 GHz and 230 GHz, respectively. It has been shown that the InP-composite channel MHEMT has the potential applications for the millimeter wave power device.

Research on Broadband Millimeter-wave Cascode Amplifier using MHEMT (MHEMT를 이용한 광대역 특성의 밀리미터파 Cascode 증폭기 연구)

  • Baek, Yong-Hyun;Lee, Sang-Jin;Baek, Tae-Jong;Choi, Seok-Gyu;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, millimeter-wave broadband MHEMT (Metamorphic High Electron Mobility Transistor) cascode amplifiers were designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs MHEMT was fabricated for cascode amplifiers. The DC characteristics of MHEMT are 670 mA/mm of drain current density, 588 mS/mm of maximum transconductance. The current gain cut-off frequency($f_T$) is 139 GHz and the maximum oscillation frequency($f_{max}$) is 266 GHz. To prevent oscillation of the designed cascode amplifiers, a parallel resistor and capacitor were connected to the drain of common gate device. By using the CPW (Coplanar Waveguide) transmission line, the cascode amplifier was designed and matched for the broadband characteristics. The designed amplifier was fabricated by the MHEMT MMIC process that was developed through this research. As the results of measurement, the amplifier was obtained 3 dB bandwidth of 50.37 GHz between 20.76 to 71.13 GHz. Also, this amplifier represents the S21 gain with the average 7.07 dB gain in bandwidth and the maximum gain of 10.3 dB at 30 GHz.

Fabrications of Low Conversion Loss and High LO-RF Isolation 94 GHz Resistive Mixer (낮은 변환손실과 높은 LO-RF 격리도 특성을 갖는 94 GHz Resistive Mixer 의 제작)

  • Lee, Bok-Hyung;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.921-924
    • /
    • 2005
  • We report low conversion loss and high LO to RF isolation 94 GHz MMIC resistive mixers based on 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT technology. The fabricated resistive mixers applied a one-stage amplifier on RF port of the mixer. By using the one-stage amplifier, we obtained the decrement of conversion loss and the increment of LO to RF isolation. So, we can obtain higher performances than conventional resistive mixers. The modified mixer shows excellent conversion loss of 6.7 dB at a LO power of 10 dBm. We also observed an extremely high isolation characteristic from the MMICs exhibiting the LO-RF isolation of 21 ${\pm}$ 0.5dB in a frequency range of 93.7${\sim}$ 94.3 GHz. The low conversion loss and high LO-RF isolation characteristics of the MMIC modified resistive mixers are mainly attributed to the performance of the MHEMTs exhibiting a maximum transconductance of 654 mS/mm, a current gain cut-off frequency of 173 GHz and a maximum oscillation frequency of 271 GHz.

  • PDF