• Title/Summary/Keyword: metamorphic

Search Result 528, Processing Time 0.028 seconds

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Metamorphic Networks

  • Pujolle, Guy
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.3
    • /
    • pp.198-203
    • /
    • 2013
  • In this paper, we focus on a novel Internet architecture, based on the urbanization of virtual machines. In this approach, virtual networks are built linking specific virtual elements (router, switch, firewall, box, access point, etc.). A virtual network represents a network with an independent protocol stack that shares resources from the underlying network infrastructure. Virtualization divides a real computational environment into virtual computational environments that are isolated from each other, and interact with the upper computational layer, as would be expected from a real, non-virtualized environment. Metamorphic networks enhance several concepts related to future networks, and mainly the urbanization of virtual machines. We present this new paradigm, and the methodology, based on the worldwide metamorphic network platform "M-Net". The metamorphic approach could solve many complex problems, especially related to Cloud computing services.

Design and Fabrication of 100 GHz MIMIC Amplifier Using Metamorphic HEMT (Metamorphic HEMT를 이용한 100GHz MIMIC 증폭기의 설계 및 제작)

  • 안단;이복형;임병옥;이문교;백용현;채연식;박형무;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.25-30
    • /
    • 2004
  • In this Paper, the 0.1 w InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC, and a 100 GHz MIMIC amplifier were designed and fabricated. The DC characteristics of MHEMT are 640 mA/mm of drain current density, 653 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 173 GHz and the maximum oscillation frequency(fmax) is 271 GHz. A 100 GHz amplifier was designed using 0.1${\mu}{\textrm}{m}$ MHEMT and CPW technology. The measured results from the 100 GHz MIMIC amplifiers show good S21 gain of 10.1 dB and 12.74 dB at 100 GHz and 97.8 GHz, respectively.

Heavy Metal Contents of Gypsophila oldhamiana Growing on Soil Derived from Serpentine (사문암 지역에서 생육하는 대나물(Gypsophila oldhamiana)의 중금속 함량)

  • 김명희;민일식;송석환
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.385-391
    • /
    • 1997
  • To investigate the degrees of toxification in the serpentine areas, serpentinites and adjacent metamorphic rocks and soils from the serpentinite, metamorphic area and transitional area(mixed soil) between serpentinite and metamorphic rocks are collected from the Hongseong-Gun, Chungnam. A plant, Geochemically, the serpentinites are high in the nickel, chromium and cobalt content whereas the metamorphic rocks show high zinc, scandium, molybdenum and iron contents. The serpentine soils are high in the nickel, chromium and cobalt contents whereas the non-serpentine soils show high zinc and iron contents. Heavy metal contents in the G. oldhamiana are high in the serpentine soil relative to the mixed soil. Ratio of the iron to nickel contents for the G. oldhamiana are low in the serpentine soil(49) relative to the mixed soil(216). Of the G. oldhamiana, most of the heavy metal contents except zinc and molybdenum are high in the root relative to the aboveground vegetation. Comparing with rocks, the G. oldhamiana is low in the all of heavy metal contents relative to the serpentinite. Uptake of zinc by the G. oldhamiana is high in the serpentinites and metamorphic rocks whereas uptake of scandium and iron by the G. oldhamiana is very high in the serpentinite area.

  • PDF

The Hida metamorphic belt developed near the triple junction among the Sino-Korea, Yangtze and Proto-Pacific plates

  • Kunugiza, Keitaro
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.1-3
    • /
    • 2002
  • The eastward extension of the suture zone between the Sino-Korea and Yangtze cratons in the Korean Peninsula and Japanese islands remains debatable (Hiroi, 1981; Cluzel et al., 1991; Yin and Nie, 1993; Sohma and Kunugiza, 1993; Isozaki, 1997; Arakawa et at., 2000), and is related to our understanding of the continent-continent collision orogeny. The collision orogeny varies in tectono-metamorphic processes and the timing differs from place to place, as exemplified by the absence of coesite and micro-diamond in the Korean Peninsula and Japanese islands, because it is a long-lived process of more than several tens of million years from subduction to exhumation in the Wilson cycle, and because the suture zone extends more than several thousand kilometers with a curved shape from the Qinling area of China to the Hida highland area of Japan. Hiroi (1981) is the first paper to correlate the Unazuki metamorphic rocks of the Hida metamorphic belt in Japan with the Ogcheon belt in the Korean Peninsula based on the presence of 240 Ma medium P/T metamorphic rocks in both belts, but there is a lack of recent studies on this correlation. To resolve the correlationship, there are two approaches: 1) petrological studies characterizing the origin and P-T history of rocks and 2) in-situ micro-dating of fine-grained, zoned minerals of zircon, monazite, uraninite and thorite using the EPMA (U-Th-Pb chemical dating or CHIME depending on calibration method) and the SHRIMP (Sensitive High-resolution ion Microprobe) to decipher the timing of geological events. As a first step of these approaches, micro-dating was undertaken to rocks of the Hida metamorphic belt and its Mesozoic cover (Tetori Group) in the Hida highland area, central Japan.

  • PDF

Geochemistry of Precambrian Metamorphic Rocks from Yongin-Anseong Area, the Southernmost Part of Central Gyeonggi Massif (경기육괴 중부 남단(용인-안성지역)에 분포하는 선캠브리아기 변성암류의 지구화학적 특징)

  • 이승구;송용선;증전창정
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • The metamorphic rocks of Yongin-Anseong area in Gyeonggi massif are composed of high-grade gneisses and schists which are considered as Precambrian basement, and Jurassic granite which intruded the metamorphic rocks. In this paper, we discuss the geochemical characteristics of metamorphic rocks and granites in this area based on REE and Nd isotope geochemistry. And we also discuss the petrogenetic relationship between metamorphic rocks and granites in this area. Most of Nd model ages (T$\_$DM/$\^$Nd/) from the metamorphic rocks range ca. 2.6Ga~2.9Ga which are correspond to the main crustal formation stage in Gyeonggi massif by Lee et. al. (2003). And Nd model ages show that the source material of quartzofeldspathic gneiss is slightly older than that of biotite banded gneiss. In chondrite-normalized rare earth element pattern, the range of (La/Yb)$\_$N/ value from biotite banded gneiss is 37~136, which shows sharp gradient and suggests that biotite banded gneiss was originated from a strongly fractionated source material. However, that of amphibolite is 4.65~6.64, which shows nearly flattened pattern. Particularly, the chondrite normalized REE patterns from the high-grade metamorphic rocks show the REE geochemisoy of original source material before metamorphism. In addition, the values of (La/Yb)$\_$N/ and Nd model ages of granite are 32~40 and 1.69Ga~2.08Ga, respectively, which suggest that the source material of granite is different from that of Precambrian basement such as biotite banded gneiss and quartzofeldspthic gneiss in the area.

Comparative Studies between Chungju and Seosan Groups (충주층군(忠州層群)과 서산층군(瑞山層群)의 비교연구(比較硏究))

  • Na, Ki Chang;Kim, Hyung Shik;Lee, Dong Jin;Lee, Sang Hun
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.177-188
    • /
    • 1982
  • The Chungju and Seosan Groups have been known usually as Precambrian formations in Korea. But their relative and absolute ages have been controvericial problem in relation with other geologic system such as so-called Ogcheon and Yeoncheon Systems in Korea. This study has mainly focused on the corelation of the Chungju Group with the Seosan Group in their stratigraphy, structure, metamorphism, and iron ore deposits. In the process of study, the auther surveyed and reclassified the Chungju and Seosan Groups and corelated with Gyeonggi and Ogch cheon metamorphic belts and got some new data. The Chungju iron-bearing formations showing transtitional relation with the Gyeonggi Gneiss Complex and the Jangamri Formation consisting mainly of pebble bearing calcarious phyllite, should be seperated from the Gyemyeongsan formation which is mainly composed of metavolcanic rocks. The Jangamri Formation and the coaly phyllite, which can be corelated respectively with the Hwaggangri Formation and Changri Formation in Ogcheon Group, are repeated in the Gyemyeonsan and Munjuri Formations with the overturned anticlinal folding(F1). So the Chungju Group which was defined as an indipendant geologic unit from the Ogcheon Group should be limited only on the Chungju iron Formation. The Seosan Group can be classified stratigraphically such as Seosan Formation consisting of iron-bearing quartzite and mica schist, Daesan Formation overlying unconformably on the Seosan Formation and Gyeonggi Gneiss Complex. Taean Formation overlying unconformably on the Daesan Formation should be seperated from Seosan Group. There are many similarity in the stratigrphy, structure, and metamorphic facies between Chungju and Seosan Groups exept the metavolcanic rocks in the Gyemyeongsan and Munjuri Formations and the pebble bearing calcareous phyllite in the Jangamri Formation. The two Groups were deformed with two kinds of differant stages, the first shows $N30^{\circ}-40^{\circ}E$ trend of fold axis, the second $N70^{\circ}-80^{\circ}W$ respectively. The Seosan Formation, which is the lowest formation in Seosan Group and bearing the iron formation, was metamorphosed at 2500 m. y. before. These age is similar with the metamorphic age of Gyeonggi metamorphic belt and with the age of Algoman and Kenoran Orogenies which devide the Precambrian into Archean and Proterozoic Era. So the Seosan Formation, which is included in some migmatitic rocks of Gyeonggi Gneiss Complex, is the oldest formation in Korea and can be corelated with the Anshan Group which bears the oldest iron formation in China. The metamorphic facies of the Precambrian metamorphism in Seosan area is simillar with that of Chungju area, showing high temperature-low pressure amphibolite facies which is corelated with the Gyeonggi metamorphic belt, the oldest metamorphic belt in Korea ($650^{\circ}-680^{\circ}C$, 3.2-4.4 Kb). The high temperature intermediate pressure amphibolite facies in Seosan area with the low temperature-intermediate presure greenschist facies of Taean formation is corelated with that of Ogcheon Group ($590^{\circ}-640^{\circ}$ C, 5.2-6.3 Kb). The Chungju and Seosan iron formations were deposited in Archean, showing geochemical composition of Precambrian iron formations. The Chungju iron formation was mainly formed by the chemical precipitation, on the other hand, the Seosan iron formation was formed by alternated action of chemical and detrital depositions.

  • PDF