Browse > Article

Geochemistry of Precambrian Metamorphic Rocks from Yongin-Anseong Area, the Southernmost Part of Central Gyeonggi Massif  

이승구 (한국지질자원연구원 지하수지열연구부)
송용선 (부경대학교 환경지질과학과)
증전창정 (일본 동경대학 이학부 화학과)
Publication Information
The Journal of the Petrological Society of Korea / v.13, no.3, 2004 , pp. 142-151 More about this Journal
Abstract
The metamorphic rocks of Yongin-Anseong area in Gyeonggi massif are composed of high-grade gneisses and schists which are considered as Precambrian basement, and Jurassic granite which intruded the metamorphic rocks. In this paper, we discuss the geochemical characteristics of metamorphic rocks and granites in this area based on REE and Nd isotope geochemistry. And we also discuss the petrogenetic relationship between metamorphic rocks and granites in this area. Most of Nd model ages (T$\_$DM/$\^$Nd/) from the metamorphic rocks range ca. 2.6Ga~2.9Ga which are correspond to the main crustal formation stage in Gyeonggi massif by Lee et. al. (2003). And Nd model ages show that the source material of quartzofeldspathic gneiss is slightly older than that of biotite banded gneiss. In chondrite-normalized rare earth element pattern, the range of (La/Yb)$\_$N/ value from biotite banded gneiss is 37~136, which shows sharp gradient and suggests that biotite banded gneiss was originated from a strongly fractionated source material. However, that of amphibolite is 4.65~6.64, which shows nearly flattened pattern. Particularly, the chondrite normalized REE patterns from the high-grade metamorphic rocks show the REE geochemisoy of original source material before metamorphism. In addition, the values of (La/Yb)$\_$N/ and Nd model ages of granite are 32~40 and 1.69Ga~2.08Ga, respectively, which suggest that the source material of granite is different from that of Precambrian basement such as biotite banded gneiss and quartzofeldspthic gneiss in the area.
Keywords
REE; Nd model age; Precambrian;
Citations & Related Records
연도 인용수 순위
  • Reference
1 대한지질학회, 1999, 제4장 화성활동, 한국의 지질, 대한지질학회, 409-417
2 오인섭, 박석환, 1973, 한국지질도(1:50,000 오산도폭). 국립지질광물연구소. 21p
3 이상만, 김형식, 송용선, 1989, 안성도폭 지질보고서 (1:50,000). 한국동력자원연구소, 18p
4 DePaolo, D. J., 1988, Neodymium Isotope Geochemistry. Springer-Verlag, Berlin, 187p
5 Heier, K. S., 1973, Geochemistry of granulite facies rocks and problems of their origin. Philos. Trans. R. Soc. Lon., A273, 429-442
6 Jahn, B-m. and Zhang, Z. Q., 1984, Radiometric Ages (RbSr, Sm-Nd, U-Pb) and REE Geochemistry of Archean Granulite Gneisses from eastern Hebei Province, China. In Archrean Geochemistry (ed. A. Kroner, G.N. Hanson and A.M. Goodwin). Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 204-234
7 Lee, S. G., Lee, D. H., Kim, Y, Chae, B. G., Kim, W. Y., Woo, N. C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fractured-filling calcite. Appl. Geochem. 18, 135-143
8 Lee, S. R., Cho, M., Hwang, J. H., Lee, B-J., Lim, V-B. and Kim, J. C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Preca. Res. 121, 25-34
9 Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248
10 Tarney, J. and Windley, B. F., 1977, Chemistry, thermal gradients and evolution of the lower continental crust. Jour. Geol. Soc. Lon., 134, 153-172
11 Lee, S. G., Masuda, A., Shimizu, H. and Song, Y-S., 2001, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneisses. Geochem. Jour. 35, 175-187
12 이승구, 성낙훈, 김용제, 增田彰正, 2001, 동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용. 암석학회지, 제10호, 190-201
13 Shimizu, H., Amakawa, H., Sawatari, H. and Masuda, A., 1990, Estimation of light rare earth element patterns in original sources for rocks from their Ce and Nd isotopic ratios. Mass Spectroscopy, 38, 107-113
14 Allegre, C. J., Ben Othman, D., Polve, M. and Richard, P., 1979, The Nd-Sr isotopic correlation in mantle materials and geodynamic consequences. Earth Planet. Sci. Lett., 19, 293-306
15 Dickin, A. P., 1988, Mantle and crustal Ce/Nd isotope systematics. Nature, 333, 403-404
16 Tanaka, T., Shimizu, H., Kawata, Y. and Masuda, A., 1987, Combined La-Ce and Sm-Nd isotope systematics in petrogenetic studies. Nature, 327, 113-117
17 여상철, 임주환, 1974, 한국지질도(1:50,000 이천도폭). 국립 지질광물 연구소, 15p
18 Lee, S. G., Song, Y.-S. and Masuda, A., 1994, 1.2 Ga MineraI Isochron of Changhowon Garnet Gneiss. Jour. Geol. Soc. Korea. 30, 62-68
19 Irber, W., 1999, The lanthanide tetrad effect and its correla-tion with K/Rb, $Eu/Eu^\ast$, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmo-chim, Acta, 63, 489-508
20 정창식, 장호완, 1996, 중부 옥천대 변성대의 화성, 변성 및 광화작용과 조구조적 연관성 연구(I): 보은 지역 화강암류의 암석화학과 동위원소 지구화학, 지질학회지, 32, 91-116
21 Shimizu, H., Tanaka, T. and Masuda, A., 1984, Meteoritic $^{138}Ce/^{142}Ce$ ratio and its evolution. Nature, 307, 251-252
22 오인섭, 윤윤영, 1972, 한국지질도(1:50,000 수원도폭). 국립지질조사소. 21p
23 Bau, M., 1999, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 63, 67-77
24 Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Sci. Rev. 52, 175-235
25 Jahn, B.-m., Wu, F, Capdevila, R., Martineau, E, Zhao, Z., Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos 59, 171-198
26 Lee, S. R., Cho, M., Cheong, C. S. and Park, K-H., 1997, An early Proterozoic Sm-Nd age of mafic granulite from the Hwacheon area, South Korea. Geoscience Jour. 1, 136-142
27 Lee, S. G., Kim, Y., Chae, B. G., Koh, D. C., Kim, K. H., 2004, The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl. Geochem. 19, 1711-1725
28 Jahn, B-m., Glikson, A. Y, Peucat, J. J. Hickman, A. H., 1981, REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the eary crustal evolution. Geochim. Cosmochim. Acta, 45, 1633-1652
29 Taylor, S. R. and McLennan, S. M., 1981, The composition and evolution of the continental crust: rare earth element evidence from the sedimentary rocks. Philos. Trans. R. Soc. Lond. A301, 381-399
30 Bau, M., 1997, The lanthanide tetrad effect in high evolved felsic igneous rocks- A reply to the comment by Y. Pan. Contrib. Mineral. Petrol. 128, 409-412
31 Bau, M., 1996, Controls on the fractionation of isovalent tarce elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthnide tetrad effect. Contr. Mineral. Petrol., 123, 323-333