• 제목/요약/키워드: metallopeptidase-9,2 (MMP-9,2)

검색결과 11건 처리시간 0.025초

HaCaT 각질형성세포에서 TNF-α에 의하여 유도되는 염증 발현에 대한 부위별 모링가 추출물의 억제 효과 (Suppression of TNF-α-induced Inflammation by Extract from Different Parts of Moringa in HaCaT Cells)

  • 이효진;장영채
    • 생명과학회지
    • /
    • 제22권9호
    • /
    • pp.1254-1260
    • /
    • 2012
  • 모링가(Moringa oleifera Lam.)는 항알러지 약물로써 식용 가능한 식물이다. 본 연구에서 부위별 모링가의 피부 보호제로서의 가능성을 확인하기 위하여, TNF-${\alpha}$로 염증을 유도한 각질형성세포에서 모링가의 씨, 뿌리, 잎과 열매 메탄올 추출물의 항염증 효과를 비교 실험하였다. 피부세포의 콜라겐 분해 관련인자인 MMP-2, MMP-9의 효소 활성을 측정한 결과 모든 부위별 모링가 추출물이 MMP-9의 효소 활성을 감소시켰다. 특히 모링가 뿌리 추출물은 낮은 농도에도 MMP-9을 효과적으로 감소시켰으며 MMP-2의 효소활성 억제에도 효과가 관찰되었다. 또한 피부 염증관련 인자로 알려진 iNOS와 COX-2의 단백질 발현을 측정한 결과, COX-2의 단백질 발현은 모링가 잎을 제외한 뿌리, 씨앗, 열매 추출물에 의해 억제되었다. 그 중 모링가 뿌리 추출물은 낮은 농도에서도 COX-2 단백질의 발현을 억제시켰다. 그러나 iNOS는 부위별 모링가 추출물에 의한 단백질 발현의 변화가 없는 것으로 나타났다. 뿐만 아니라 피부 염증을 일으키는 cytokine으로 알려진 IL-6의 mRNA발현을 확인한 결과 TNF-${\alpha}$에 의해 증가된 IL-6 발현을 모링가 뿌리 추출물이 효과적으로 억제 시키는 것을 확인할 수 있었다. 이상의 결과로 미루어 보아 부위별 모링가 추출물 중 뿌리 추출물에서 가장 피부노화 억제와 항 염증 효과가 높을 것으로 사료되며, 식물 유래의 피부 보호제 제품 개발에 있어 유용한 원료로 사용될 수 있을 것으로 생각된다.

The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

  • Lee, Kang Pa;Choi, Nan Hee;Kim, Jin Teak;Park, In-Sik
    • Nutrition Research and Practice
    • /
    • 제9권3호
    • /
    • pp.256-261
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS: Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS: Yacon ($300{\mu}g/mL$) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and $300{\mu}g/mL$) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and $300{\mu}g/mL$) induced TIMP-1 expression. CONCLUSIONS: On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels.

Solanum nigrum L. Extract Inhibits Inflammation in Lipopolysaccharide-stimulated Raw 264.7 and BV2 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.92-92
    • /
    • 2018
  • Solanum nigrum L. (SNL), generally known as black nightshade, is traditionally used as medicine to reduce inflammation caused by several diseases like asthma, chronic bronchitis and liver cirrhosis. In this study, anti-inflammatory effects of SNL extract were examined and possible molecular mechanisms of the anti-inflammatory effects were investigated. The inhibitory effects of SNL extract on nitric oxide (NO), pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6) and Matrix metallopeptidase 9 (MMP-9) productions were dissected using lipopolysaccharide (LPS) stimulated murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. We further investigated whether SNL extract could suppress the phosphorylation of ERK1/2, JNK, and p38 and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 in LPS-stimulated Raw264.7 cells and BV2 cells. As a result, we showed that the SNL extract significantly decreased the production of pro-inflammatory cytokines, NO, and MMP-9. In addition, the SNL strongly inhibited the phosphorylation of ERK1/2, JNK, p38 and nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. We confirmed that the extracts of SNL effectively inhibits the anti-inflammatory and may be used as a therapeutic to various inflammatory diseases.

  • PDF

KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells

  • Zhu, Shengxing;Shi, Jihua;Zhang, Shanfeng;Li, Zhen
    • Journal of Gastric Cancer
    • /
    • 제18권4호
    • /
    • pp.356-367
    • /
    • 2018
  • Purpose: Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods: In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high ($KLK6^{high}$) and KLK6-low ($KLK6^{low}$), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results: The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to $KLK6^{low}$ cells, $KLK6^{high}$ cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions: Together, these results suggest an important role for KLK6 in human gastric cancer progression.

알레르기성 비염에서 황련-감초 하태독법의 IL-4활성 조절을 통한 항염증효과 (Anti-inflammatory effects of Hataedock with Coptidis Rhizoma and Glycyrrhiza Uralensis on Allergic Rhinitis through Regulating IL-4 Activation)

  • 정아람
    • 동의생리병리학회지
    • /
    • 제33권2호
    • /
    • pp.116-122
    • /
    • 2019
  • The aim of this study is to evaluate the anti-inflammatory effect of Hataedock treatment using Coptidis Rhizome and Glycyrrhiza Uralensis (CG) mixed extract in allergic rhinitis induced NC/Nga mice. We divided NC/Nga mice into 3 groups as follows; allergic rhinitis-induced group after CG Hataedock treatment (CGT, n=10), no treatment group (Ctrl), allergic rhinitis elicited group (ARE). To induce allergic rhinitis, NC/Nga mice of 3 weeks age were sensitized on 7, 8 and 9week by Ovalbumin (OVA) antigen in intranasal space. Hataedock using CG extract was administered on week 3 in allergic rhinitis-induced group (CGT) after Hataedock treatment. To identify distribution of Interlukin (IL)-4, Cluster of differentiation 40 (CD40), high-affinity IgE receptor ($Fc{\varepsilon}RI$), substance P, Matrix metallopeptidase 9 (MMP-9), Nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, Inducible nitric oxide synthase (iNOS) and Cycloxygenase-2 (COX-2), we used histological examination. CGT significantly inhibited IL-4 and CD40 response compared with ARE. The reduction of Th2 cytokine expression decreased inflammatory mediators such as $Fc{\varepsilon}RI$, substance P, MMP-9, $NF-{\kappa}B$ p65, iNOS and COX-2. Such immunological improvement induced reduction of respiratory epithelial damage and mucin secretion in goblet cell. These results indicate that Hataedock treatment suppresses allergic rhinitis through modulating of Th2 responses and diminishing various inflammatory mediators in nasal mucosal tissue. It might have potential applications for prevention and treatment of allergic rhinitis.

후코이단이 혈관 내피세포의 신생혈관 생성 효과 및 관련 유전자의 발현에 미치는 영향 (Effect of Fucoidan on Angiogenesis and Gene Expression in Human Umbilical Vein Endothelial Cells)

  • 박호;김범수
    • 대한임상검사과학회지
    • /
    • 제49권4호
    • /
    • pp.323-328
    • /
    • 2017
  • 신생혈관생성은 여러 신생혈관 생성 인자들이 포함되는 중요한 과정이며, 특히 이 과정에서는 섬유아세포증식인자(FGF-2)는 세포의 증식률과 미세관 형성을 촉진하기 때문에 중요한 신생혈관 생성인자로 여겨진다. 최근 연구에 따르면 해조류에서 추출되는 후코이단 다당류 물질이 섬유아세포 증식인자2에 의한 혈관내피세포의 미세관형성을 더욱 촉진한다고 보고하였다. 그러나 섬유아세포 증식인자와 후코이단 복합처리에 따른 신생혈관생성 활성에 대한 분자적 메카니즘은 아직 연구가 부족하다. 따라서 본 연구에서는 신생혈관생성 활성을 알아보기 위하여 섬유아세포 증식인자와 후코이단 물질의 복합처리에 따른 세포의 증식과 미세관형성률 그리고 세포의 이동율을 측정하였다. 또한 이들의 신생혈관 생성 활성에 관련된 인자를 탐색하기 위하여 VEGF-A, ICAM-1, MMP9, 그리고 ICAM-1 유전자를 연전사 중합연쇄반응으로 평가하였다. 본 연구의 결과에서는 후코이단과 섬유아세포 증식인자 복합처리는 혈관내피세포의 성장률, 미세관 형성률 그리고 세포의 이동률을 촉진하고, 이 과정에서 신생혈관생성 기능과 관련된 STAT3, VEGF-A, MMP9 그리고 ICAM-1의 유전자 발현을 촉진함으로 신생혈관 생성활성이 나타나는 것으로 보여진다. 그러나 이러한 유전자 발현이 fucoidan/FGF2에 의한 angiogenic 활성 촉진에 직접적인 영향을 미치는 지에 대한 추가적인 연구가 이루어져야 할 것으로 생각된다.

인체 혀의 편평세포암 세포에서 ω3-fatty acid desaturase 유전자 발현이 침윤 및 종양형성에 미치는 영향 (Effect of ω3-Fatty Acid Desaturase Gene Expression on Invasion and Tumorigenicity in Human Tongue Squamous Cell Carcinoma Cells)

  • 홍태화;신소연;한승현;황병두;임규
    • 생명과학회지
    • /
    • 제28권8호
    • /
    • pp.945-954
    • /
    • 2018
  • 오메가-3 지방산(오메가-3)은 수종의 암에 대해 종양형성 억제 및 침윤이 억제됨이 알려져 있다. 그러나 혀의 편평세포암 세포에서 내인성 오메가-3에 의한 침윤 및 종양형성 억제 대한 연구가 명확하게 보고된 바 없다. 이에 본 연구는 혀의 편평세포암 세포에서 ${\omega}3$-fatty acid desaturase의 유전자 발현이 침윤 및 종양형성에 미치는 영향을 규명하였다. 먼저 SCC-4 및 SCC-9세포의 침윤능은 오메가-3인 DHA 처리에 의해 억제 됨을 확인 하였다. DHA 처리 후 MMP-9 및 MMP-2 활성이 감소 되었을 뿐만 아니라 그 promoter의 reporter 활성도 억제하였다. 또한 COX-2 및 VEGF promoter 활성 뿐만 아니라 NF-kB 활성도 DHA에 의해 억제 되었다. SCC-9의 ${\omega}3$-desaturase 유전자 stable 세포(fSCC-9sc)의 세포증식 및 colony formation이 억제 되었으며, in vivo 동물실험에서 fSCC-9sc 세포의 종양형성능은 현저히 억제 되었고, 면역형광염색법을 이용한 fSCC-9sc 세포의 종양 조직에서의 TUNEL 양성세포는 대조군인 fSCC-9cc 세포에 비해 현저히 증가하였다. 이상의 결과로 오메가-3는 인체 혀의 편평세포암 세포의 침윤 뿐만 아니라 종양형성을 억제하여 항암작용을 나타낼 수 있으며 따라서 오메가-3는 인체 혀의 편평암의 예방 및 치료에 유용하게 사용될 수 있으리라 생각된다.

아토피피부염에서 Endocannabinoid system (ECS) 조절을 통한 백호탕 추출물의 염증 완화 효과 (Anti-inflammatory Effect of Baekho-tang Extract through Endocannabinoid system (ECS) Control in Atopic Dermatitis)

  • 안상현;김기봉;정아람
    • 대한한방소아과학회지
    • /
    • 제37권4호
    • /
    • pp.53-62
    • /
    • 2023
  • Objectives The aim of this study was to identify the effect of Baekho-tang extract on epidermal barrier recovery and inflammation relief in atopic dermatitis-induced mice through Endocanabinoid system (ECS) regulation. Methods In this study, we used 4-week-old NC/Nga mice were divided into 4 group: lipid barrier elimination group (LBEG), palmitoylethanolamide treated group after lipid barrier elimination (PEAT), Baekho-tang extract treatment group after lipid barrier elimination (BHTT) and control group (Ctrl). Each group was assigned 10 animals. We identified that cannabinoid receptor (CB) 1, CB2, CD (Cluster of Differentiation) 68, inducible nitric oxide synthase (iNOS), substance P and Matrix metallopeptidase 9 (MMP-9) through our immunohistochemistry. Results We discovered that when compared to PEAT, 8-hydroxydeoxyguanosine, a marker of oxidative stress in the epidermal barrier, and CB1 and CB2, markers of ECS modulation, were less activated in BHTT. These results led to an anti-inflammatory response in BHTT, with a significant decrease in several inflammatory mediators such as CD 68, iNOS, substance P and MMP-9 compared to PEAT and LBEG. Conclusions These results suggest that the Baekho-tang extract can reduce the inflammation of atopic dermatitis by restoring the structural damage of the skin lipid barrier through ECS modulation.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.