• 제목/요약/키워드: metallic oxide

검색결과 324건 처리시간 0.028초

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

MOCVD 더스트로부터 Ga과 In의 침출 거동 (Leaching behavior of Ga and In from MOCVD dust)

  • 박경수;;강이승;이찬기;홍현선;심종길;박정진
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.202-206
    • /
    • 2014
  • Leaching of MOCVD dust in the LED industry is an essential stage for hydro-metallurgical recovery of pure Ga and In. To recover Ga and In, the leaching behavior of MOCVD scrap of an LED, which contains significant amounts of Ga, In, Al and Fe in various phases, has been investigated. The leaching process must be performed effectively to maximize recovery of Ga and In metals using the most efficient lixiviant. Crystalline structure and metallic composition of the raw MOCVD dust were analyzed prior to digestion. Subsequently, various mineral acids were tested to comprehensively study and optimize the leaching parameters such as acidity, pulp density, temperature and time. The most effective leaching of Ga and In was observed for a boiling 4 M HCl solution vigorously stirred at 400 rpm. Phase transformation of GaN into gallium oxide by heat treatment also improved the leaching efficiency of Ga. Subsequently high purity Ga and In can be recovered by series of hydro processes.

Camphene/WO3-NiO 슬러리의 동결건조 및 수소분위기 열처리에 의한 W-Ni 다공체 제조 (Porous W-Ni Alloys Synthesized from Camphene/WO3-NiO Slurry by Freeze Drying and Heat Treatment in Hydrogen Atmosphere)

  • 박성현;박성민;박소정;박보영;오승탁
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.108-112
    • /
    • 2018
  • The present study demonstrates the effect of raw powder on the pore structure of porous W-Ni prepared by freeze drying of camphene-based slurries and sintering process. The reduction behavior of $WO_3$ and $WO_3-NiO$ powders is analyzed by a temperature programmed reduction method in Ar-10% H2 atmosphere. After heat treatment in hydrogen atmosphere, $WO_3-NiO$ powder mixture is completely converted to metallic W without any reaction phases. Camphene slurries with oxide powders are frozen at $-30^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene during drying in air. The green bodies are hydrogen-reduced at $800^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. The sintered samples show large and aligned parallel pores to the camphene growth direction, and small pores in the internal wall of large pores. The strut between large pores, prepared from pure $WO_3$ powder, consists of very fine particles with partially necking between the particles. In contrast, the strut densification is clearly observed in the Ni-added W sample due to the enhanced mass transport in activation sintering.

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상 (Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling)

  • 김혜진;안기용;김보영;이종흔;정용재;김혜령;이종호
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.

알루미늄드로스를 재활용한 캐스타블내화물 제조 (Preparation of Castable Refractories by Recycling of Aluminum Dross)

  • 박형규;이후인;이진영
    • 자원리싸이클링
    • /
    • 제12권3호
    • /
    • pp.46-53
    • /
    • 2003
  • 알루미늄드로스의 재활용은 알루미늄 재생지금 제조시에 요구되는 중요한 사항 중의 하나이다. 본 연구에서는 국내 재생 알루미늄업체에서 발생된 알루미늄드로스를 처리하여 알루미나질 내화물 원료로 재활용하고자 하였다. 드로스 시료를 크기에 따라 선별하고, 1 mm보다 작은 크기의 드로스를 수산화나트륨 용액으로 침출하여 드로스 중의 잔류 알루미늄을 용액 중으로 분리 추출하고, 침출용액에서 석출반응에 의하여 수산화알루미늄을 회수하였다. 드로스 중의 금속알루미늄을 회수한 후 발생된 침출잔사는 수세, 건조, 배소와 같은 일련의 처리를 하여 드로스 중의 잔류 금속성분을 산화물 형태로 변환시켰다. 배소 처리한 드로스 잔사를 골재 및 점결제와 배합하여 알루미나질 캐스타블내화물을 만들고, 굽힘강도와 압축강도를 시험한 결과 KS 기준치인 굽힘강도 $25\;kg/\textrm{m}^2$ 이상, 압축강도 $80\;kg/\textrm{cm}^2$ 이상을 만족하였다. 본 연구결과를 알루미늄드로스를 효율적으로 재활용할 수 있는 한가지 방안으로 제안하고자 한다.

Al6061합금의 PEO 피막 형성에 미치는 AC 전류밀도의 영향 (Effect of AC Current Density on the PEO Film Formation of Al6061 Alloy)

  • 박철기;문성모;정인모;윤대수
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.138-144
    • /
    • 2019
  • In this work, PEO (Plasma Electrolytic Oxidation) film formation behavior of Al6061 alloy was investigated as a function of applied current density of AC at 310 Hz in the range from $120mA/cm^2$ to $300mA/cm^2$ in 0.5 M $Na_2SiO_3$ solution. When applied current density is lower than a critical voltage of about $132mA/cm^2$, voltage reaches a steady-state values less than 120 V without generation of arcs and metallic color of the alloy surface remains. On the other hand, when applied current density exceeds about $132mA/cm^2$, voltage increases continuously with time and arcs are generated at more than 175 V, resulting in the formation of PEO films with grey colors. Two different types of arcs, large size and small number of arcs with orange color, and small size and large number of arcs with white color, were generated at the same time when the PEO film thickness exceeds about $50{\mu}m$, irrespective of applied current density. Formation efficiency of the PEO films was found to increase with increasing applied current density and the growth rate was obtained to be about $5{\mu}m/min$ at $300mA/cm^2$. It was also found that surface roughness of the PEO films with $70{\mu}m$ thickness is not dependent on the applied current density.