Browse > Article
http://dx.doi.org/10.14773/cst.2012.11.1.009

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels  

Wang, K.K. (Department of Materials and Optoelectronic Science, National Sun Yat-Sen University)
Wang, H.-P. (Department of Materials and Optoelectronic Science, National Sun Yat-Sen University)
Chang, L. (Department of Materials and Optoelectronic Science, National Sun Yat-Sen University)
Gan, D. (Department of Materials and Optoelectronic Science, National Sun Yat-Sen University)
Chen, T.-R. (Steel & Aluminum R&D Department, China Steel Corporation)
Chen, H.-B. (Steel & Aluminum R&D Department, China Steel Corporation)
Publication Information
Corrosion Science and Technology / v.11, no.1, 2012 , pp. 9-14 More about this Journal
Abstract
The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.
Keywords
inhibition layer; galvanizing; dual-phase steel; oxides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Vanden Eynde, J. P. Servais, and M. Lamberigys, Surf. Interf. Anal., 35, 1004 (2003).   DOI   ScienceOn
2 S. Swaminathan and M. Spiegel, Appl. Surf. Sci., 253, 4607 (2007).   DOI   ScienceOn
3 H. J. Grabke, V. Leroy, and H. Viefhaus, ISIJ Int., 35, 95 (1995).   DOI
4 M. Isobe, C. Kato, and K. Mochizuki, Proc. 39th Mechanical Working and Steel Processing (MWSP) Conf., p. 121, Iron and Steel Society (1998).
5 B. Mintz, Inter. Mater. Rev., 46, 169 (2001).   DOI   ScienceOn
6 J. Mahieu, S. Claessens, and B. C. De Cooman, Metall. Mater. Trans. A, 32A, 2905 (2001).
7 Y. Tobiyama, Y. Suzuki, K. Kyono, and C. Kato, Galvatech '04, p. 771, AIST, Warrendale, PA (2004).
8 M. Guttmann, Y. Lepretre, A. Aubry, M.-J. Roche, T. Moreau, P. Drillet, J. M. Mataigne, and H. Baudin, Galvatech '95, p. 295, Iron and Steel Society (1995).
9 G. J. Harvey and P. D. Mercer, Metall. Trans., 4, 619 (1973).   DOI
10 N.-Y. Tang and G. R. Adams, in: A.R. Marder (Ed.), The Physical Metallurgy of Znic Coated Steel, p. 41, TMS, Warrendale, PA (1994).
11 E. McDevitt, Y. Morimoto, and M. Meshii, ISIJ Int., 37, 776 (1997).   DOI
12 L. Chen, R. Fourmentin, and J. McDermid, Galvatech '07, p. 321, Iron and Steel Institute of Japan (2007).
13 Y. Tobiyama and C. Kato, Tetsu-to-Hagane, 89, 38 (2003).   DOI
14 R. Khondker, A. Mertens, and J. R. McDermid, Mater. Sci. Eng. A, 463, 157 (2007).   DOI   ScienceOn
15 E. M. Bellhouse and J. R. McDermid, Mater. Sci. Eng. A, 491, 39 (2008).   DOI   ScienceOn
16 K.-K. Wang, L. Chang, D. Gan, and H.-P. Wang, Thin Solid Films (in press).
17 H.-P. Wang, K.-K. Wang, L. Chang, D. Gan, T.-R. Chen, H.-B. Chen, and K.-C. Yang, Proc. Taiwan 2008 ISTS Conf., China Steel Corp., Kaohsiung, Taiwan, A27 (2008).
18 R. K. Ray, Mater. Sci. Eng. A, 77, 169 (1986).   DOI   ScienceOn
19 S. G. Chowdhury, E. V. Pereloma, and D. B. Santos, Mater. Sci. Eng. A, 480, 540 (2008).   DOI   ScienceOn