• Title/Summary/Keyword: metal-organic material

Search Result 454, Processing Time 0.029 seconds

Organic light emitting diodes using Iron(II) and Metal-free Phthalocyanine (Iron(II)과 Metal-free Phthalocyanine의 결정구조 변화에 따르는 유기 발광소자의 발광 특성)

  • 임은주;한우미;이정윤;김명식;이기진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.947-950
    • /
    • 2001
  • We report the characteristics of organic light emitting diodes (OLEDS) by controlling the carrier mobility according to the crystalline of Iron(II) Phthalocyanine(Fe-Pc) and metal-free Phthalocyanine (H$_2$-Pc). In order to change the recombination zone, we controlled the hole mobility by changing the crystal structures of Fe-Pc and H$_2$-Pc. OLEDs were constructed with ITO/Fe-Pc/triphenyl-diamine (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq$_3$)/Al and ITO/H$_2$-Pc/triphenyl-diamine (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq$_3$)/Al. The electroluminescent properties were changed according to the heat-treatments of Fe-Pc and H$_2$-Pc. We observed that the recombination zone and the carrier mobility were changed as the higher occupied molecular orbital levels of Fe-Pc and H$_2$-Pc decreased.

  • PDF

Selective Metal Ion Sensing of Bipyridine-Bisterpyridine containing Fluorescent Dyes (다중 피리딘 구조를 가지는 형광염료의 금속 이온 반응성에 대한 연구)

  • Zo, Hye Jin;Kim, Arong;Jeong, Sooyeon;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.254-261
    • /
    • 2013
  • In this study, we synthesized a new fluorescent polypyridyl dye 2 containing a 2,2'-bipyridine in the center and two 2,2':6',2"-terpyridines at both ends. When exposed to various metal ions, the dye 2 showed selective fluorescence responses. In the presence of $Cu^{2+}$ and $Ni^{2+}$, it exhibited a highly effective fluorescence quenching, leading to large $K_{sv}$ values of up to $10^5$. In response to most other metal ions including $Al^{3+}$, in contrast, its fluorescence changes little, showing a small Ksv value at $10^2$. Meanwhile, the compound 2 revealed a differentiated fluorescence response to $Zn^{2+}$, which is evidenced by a large red shift of > 100 nm. Such a red shift from the ion binding is attributed to the planarization of the bipyridyl unit extending the effective conjugation length in conjunction. A polypyridyl compound will find important usefulness in chemosensor application due to its selective binding to metal ions. Subsequent research concerned with modified derivatives is currently going on, as a way to provide high solubility even after metal-complexing.

Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices (광 시냅스 및 뉴로모픽 소자 기술)

  • Song, Seungho;Kim, Jeehoon;Kim, Yong-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2022
  • Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions (코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.

Preparation of Zr0.7Sn0.3TiO4 Thin Films by Metal Organic Decomposition and Their Dielectric Properties (금속유기분해법을 사용한 Zr0.7Sn0.3TiO4 박막 제조 및 유전특성)

  • Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • $Zr_{0.7}Sn_{0.3}TiO_4$ (ZST) thin films were fabricated by metal-organic decomposition, and their dielectric properties were investigated in order to evaluate their potential use in passive capacitors for rf and analog/mixed signal integrated circuits. The ZST thin film annealed at the temperature of $800^{\circ}C$ showed a dielectric constant of 27.3 and a dielectric loss of 0.011. The capacitor using the ZST film had quadratic and linear voltage coefficient of capacitance (VCC) of -65 ppm/$V^2$ and -35 ppm/V at 100 kHz, respectively. It also exhibited a good temperature coefficient of capacitance (TCC) value of -32 ppm/$^{\circ}C$ at 100 kHz.

One-step Fabrication of a Tannic Acid-Transition Metal-Polymer Gel as a Pressure-Sensitive Adhesive (타닌산-전이 금속-고분자로 구성된 젤의 단일 단계 합성과 점착제로의 이용)

  • Lee, Jaehong;Lee, Kyoungmun;Choi, Siyoung Q.
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.176-183
    • /
    • 2020
  • In this study, synthesis of a hydrogel consisted of a coordination bond network between small organic molecules and transition metals had been carried out. By adding a tackifying material to the gel, the potential of the gel to be used as an adhesive material had been also confirmed. Synthesis of the adhesive had been done with simple mixing of 3 components: tannic acid, transition metal, and polymer. The tannic acid molecule possesses multiple hydroxyl groups that can form coordination bonds with the transition metals and hydrogen bonds with the hydrophilic polymers. Due to the morphology of the metal-organic complex and polymer dispersed in water, the fabricated material exhibited high adhesiveness and cohesiveness. Optimizing the rheological property had been conducted for use in adhesive by the synthesis with varying the transition metal (Fe3+, Ti4+), polymer, and treatment conditions. Rheological measurement results demonstrate the promising potential of the material as a bio-compatible and versatile pressure-sensitive adhesive with both high adhesiveness and cohesiveness.

Energy-level alignment and charge injection at electrodeorganic interfaces

  • Helander, M.G.;Wang, Z.B.;Lu, Z.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.112-114
    • /
    • 2009
  • Charge injection at electrode-organic interfaces is key to the performance, lifetime and stability of organic electronic devices. The link between fundamental material properties and the energy-level alignment at electrode-organic interfaces will be discussed. In addition the impact of the injection barrier height-a parameterization of the energylevel alignment-on device characteristics will also be discussed.

  • PDF

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material (P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터)

  • Han, Sang-Woo;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.209-212
    • /
    • 2018
  • In this work, we developed P(VDF-TrFE) organic/ferroelectric material based metal-ferroelectric-metal (MFM) capacitors in order to improve the switching characteristics of gallium nitride (GaN) heterojunction field-effect transistors (HFET). The 27 nm-thick P(VDF-TrFE) MFM capacitors exhibited about 60 ~ 96 pF capacitance with a polarization density of $6{\mu}C/cm^2$ at 4 MV/cm. When the MFM capacitor was connected in series with the gate electrode of GaN HFET, the subthreshold slope decreased from 104 to 82 mV/dec.