DOI QR코드

DOI QR Code

One-step Fabrication of a Tannic Acid-Transition Metal-Polymer Gel as a Pressure-Sensitive Adhesive

타닌산-전이 금속-고분자로 구성된 젤의 단일 단계 합성과 점착제로의 이용

  • Lee, Jaehong (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Kyoungmun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Siyoung Q. (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 이재홍 (한국과학기술원 생명화학공학과) ;
  • 이경문 (한국과학기술원 생명화학공학과) ;
  • 최시영 (한국과학기술원 생명화학공학과)
  • Received : 2020.02.06
  • Accepted : 2020.03.06
  • Published : 2020.05.01

Abstract

In this study, synthesis of a hydrogel consisted of a coordination bond network between small organic molecules and transition metals had been carried out. By adding a tackifying material to the gel, the potential of the gel to be used as an adhesive material had been also confirmed. Synthesis of the adhesive had been done with simple mixing of 3 components: tannic acid, transition metal, and polymer. The tannic acid molecule possesses multiple hydroxyl groups that can form coordination bonds with the transition metals and hydrogen bonds with the hydrophilic polymers. Due to the morphology of the metal-organic complex and polymer dispersed in water, the fabricated material exhibited high adhesiveness and cohesiveness. Optimizing the rheological property had been conducted for use in adhesive by the synthesis with varying the transition metal (Fe3+, Ti4+), polymer, and treatment conditions. Rheological measurement results demonstrate the promising potential of the material as a bio-compatible and versatile pressure-sensitive adhesive with both high adhesiveness and cohesiveness.

이 연구에서는 작은 유기 분자 말단의 하이드록실기와 전이 금속 사이의 배위 결합을 통해 고분자와 유사하게 연결된 복합체를 제작하고, 점착 부여제를 추가하여 해당 물질의 점착제로의 사용 가능성을 확인하였다. 점착제 합성에 사용한 타닌산(tannic acid, TA)은 하이드록실기를 풍부하게 보유하고 있어 전이 금속과는 배위 결합이 가능하고 친수성 고분자와는 수소 결합이 가능하다. 위의 성질을 이용하여 타닌산과 전이 금속, 고분자 세 가지 성분을 한 번에 간단히 섞어 기판에 잘 펴지며 점착 능력을 보유한 특별한 유변 물성을 가지는 물질을 제작하였다. 합성에 사용한 전이 금속의 종류(Fe3+, Ti4+), 고분자의 종류, 처리 조건 등에 따른 유변 물성의 변화를 확인하는 과정을 통해 점착제로 사용하기에 가장 적합한 성분의 조합을 발견하였으며, 인체에 무해하며 높은 응집력과 접착력을 보유한 다목적 점착제로의 사용 가능성을 확인하였다.

Keywords

References

  1. Ping, Y., Guo, J., Ejima, H., Chen, X., Richardson, J. J., Sun, H. and Caruso, F., "pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery," Small, 11(17), 2032-2036(2015). https://doi.org/10.1002/smll.201403343
  2. Rahim, M. A., Ejima, H., Cho, K. L., Kempe, K., Mullner, M., Best, J. P. and Caruso, F., "Coordination-Driven Multistep Assembly of Metal-Polyphenol Films and Capsules," Chem. Mater., 26(4), 1645-1653(2014). https://doi.org/10.1021/cm403903m
  3. Guo, J., Ping, Y., Ejima, H., Alt, K., Meissner, M., Richardson, J. J., Yan, Y., Peter, K., von Elverfeldt, D., Hagemeyer, C. E. and Caruso, F., "Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks," Angew. Chem. Int. Ed., 53(22), 5546-5551(2014). https://doi.org/10.1002/anie.201311136
  4. Park, J. H., Kim, K., Lee, J., Choi, J. Y., Hong, D., Yang, S. H., Caruso, F., Lee, Y. and Choi, I. S., "A Cytoprotective and Degradable Metal-Polyphenol Nanoshell for Single-Cell Encapsulation," Angew. Chem. Int. Ed., 53(46), 12420-12425(2014). https://doi.org/10.1002/anie.201405905
  5. Oh, D. X., Shin, S., Yoo, H. Y., Lim, C. and Hwang, D. S., "Surface Forces Apparatus and its Applications for Nanomechanics of Underwater Adhesives," Korean J. Chem. Eng., 31(8), 1306-1315(2014). https://doi.org/10.1007/s11814-014-0136-x
  6. Ross, T. K. and Francis, R. A., "The Treatment of Rusted Steel with Mimosa Tannin," Corros. Sci., 18, 351-361(1978). https://doi.org/10.1016/S0010-938X(78)80049-3
  7. Ejima, H., Richardson, J. J., Liang, K., Best, J. P., van Koeverden, M. P., Such, G. K., Cui, J. and Caruso, F., "One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering," Science, 341(6142), 154-157(2013). https://doi.org/10.1126/science.1237265
  8. Chang, E. P., "Viscoelastic Properties of Pressure-Sensitive Adhesives," J. Adhes., 60(1-4), 233-248(1997). https://doi.org/10.1080/00218469708014421
  9. Creton, C., "Pressure-Sensitive Adhesives: An Introductory Course," MRS Bull., 28(6), 434-439(2003). https://doi.org/10.1557/mrs2003.124
  10. Rahim, M. A., Bjornmalm, M., Suma, T., Faria, M., Ju, Y., Kempe, K., Mullner, M., Ejima, H., Stickland, A. D. and Caruso, F., "Metal-Phenolic Supramolecular Gelation," Angew. Chem. Int. Ed., 55, 13803-13807(2016). https://doi.org/10.1002/anie.201608413
  11. Seo, J. W., Kim, H., Kim, K. H., Choi, S. Q. and Lee, H. J., "Calcium-Modified Silk as a Biocompatible and Strong Adhesive for Epidermal Electronics," Adv. Funct. Mater. 28(36), 1800802(2018). https://doi.org/10.1002/adfm.201800802
  12. Song, H. M. and Lee, C. S., "Simple Fabrication of Functionalized Surface with Polyethylene Glycol Microstructure and Glycidyl Methacrylate Moiety for the Selective Immobilization of Proteins and Cells," Korean J. Chem. Eng., 25(6), 1467-1472(2008). https://doi.org/10.1007/s11814-008-0241-9
  13. Park, J. H. and Ahn, D. J., "Fabrication of Sensory Structure Based on Poly(ethylene glycol)-Diacrylate Hydrogel Embedding Polydiacetylene," Korean J. Chem. Eng., 34(7), 2092-2095(2017). https://doi.org/10.1007/s11814-017-0083-4
  14. Kim, Y. W., Kim, J. J. and Kim, Y. H., "Surface Characterization of Biocompatible polysulfone Membranes modified with Poly(ethylene glycol) Derivatives," Korean J. Chem. Eng., 20(6), 1158-1165(2003). https://doi.org/10.1007/BF02706955
  15. Brown, K., Hooker, J. C. and Creton, C., "Micromechanisms of Tack of Soft Adhesives Based on Styrenic Block Copolymers," Macromol. Mater. Eng., 287, 163-179(2002). https://doi.org/10.1002/1439-2054(20020301)287:3<163::AID-MAME163>3.0.CO;2-P
  16. Roland, K. and Ebba, F., "Water Structure and Changes in Thermal Stability of the System Poly(ethylene oxide)-Water," J. Chem. Soc., Faraday Trans. 1, 77, 2053-2077(1981). https://doi.org/10.1039/f19817702053
  17. Elena, E. D., "Role of Competitive PEO-Water and Water-Water Hydrogen Bonding in Aqueous Solution PEO Behavior," Macromolecules, 35(3), 987-1001(2002). https://doi.org/10.1021/ma010804e
  18. Joo, M., Kwak, M. J., Moon, H., Lee, E., Choi, S. Q. and Im, S. G., "Thermally Fast-Curable, "Sticky" Nanoadhesive for Strong Adhesion on Arbitrary Substrates," ACS Appl. Mater. Interfaces, 9(46), 40868-40877(2017). https://doi.org/10.1021/acsami.7b13298
  19. Moon, H., Jeong, K., Kwak, M. J., Choi, S. Q. and Im, S. G., "Solvent-Free Deposition of Ultrathin Copolymer Films with Tunable Viscoelasticity for Application to Pressure-Sensitive Adhesives," ACS Appl. Mater. Interfaces, 10(38), 32668-32677(2018). https://doi.org/10.1021/acsami.8b10009
  20. Gay, C. and Leibler, L., "Theory of Tackiness," Phys. Rev. Lett., 82(5), 936-939(1999). https://doi.org/10.1103/PhysRevLett.82.936
  21. Zosel, A., "The Effect of Fibrilation on the Tack of Pressure Sensitive Adhesives," Int. J. Adhes. Adhes., 18, 265-271(1998). https://doi.org/10.1016/S0143-7496(98)80060-2