Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.3.2

Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices  

Song, Seungho (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Kim, Jeehoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Kim, Yong-Hoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.3, 2022 , pp. 215-222 More about this Journal
Abstract
Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites
Keywords
Light stimulation; Synapse; Neuromorphic; Optoelectronic; Vision;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Gao, H. Yang, E. Li, Y. Yan, L. He, H. Chen, Z. Lin, and T. Guo, ACS Photonics, 8, 3094 (2021). [DOI: https://doi.org/10.1021/acsphotonics.1c01167]   DOI
2 C. Yang, J. Qian, S. Jiang, H. Wang, Q. Wang, Q. Wan, P.K.L. Chan, Y. Shi, and Y. Li, Adv. Opt. Mater., 8, 2000153 (2020). [DOI: https://doi.org/10.1002/adom.202000153]   DOI
3 D. Hao, J. Zhang, S. Dai, J. Zhang, and J. Huang, ACS Appl. Mater. Interfaces, 12, 39487 (2020). [DOI: https://doi.org/10.1021/acsami.0c10851]   DOI
4 F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat, and D. Vuillaume, Adv. Funct. Mater., 20, 330 (2010). [DOI: https://doi.org/10.1002/adfm.200901335]   DOI
5 C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, Nature, 528, 534 (2015). [DOI: https://doi.org/10.1038/nature16454]   DOI
6 L. Shao, H. Wang, Y. Yang, Y. He, Y. Tang, H. Fang, J. Zhao, H. Xiao, K. Liang, M. Wei, W. Xu, M. Luo, Q. Wan, W. Hu, T. Gao, and Z. Cui, ACS Appl. Mater. Interfaces, 11, 12161 (2019). [DOI: https://doi.org/10.1021/acsami.9b02086]   DOI
7 G. S. Snider, Proc. 2008 IEEE International Symposium on Nanoscale Architectures (IEEE, Anaheim, USA, 2008) p. 85. [DOI: https://doi.org/10.1109/NANOARCH.2008.4585796]   DOI
8 F. Yu, L. Q. Zhu, H. Xiao, W. T. Gao, and Y. B. Guo, Adv. Funct. Mater., 28, 1804025 (2018). [DOI: https://doi.org/10.1002/adfm.201804025]   DOI
9 D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature, 453, 80 (2008). [DOI: https://doi.org/10.1038/nature06932]   DOI
10 J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, Phys. Rev. Appl., 7, 034013 (2017). [DOI: https://doi.org/10.1103/PhysRevApplied.7.034013]   DOI
11 M. K. Akbari and S. Zhuiykov, Nat. Commun., 10, 3873 (2019). [DOI: https://doi.org/10.1038/s41467-019-11823-4]   DOI
12 C. Choi, M. K. Choi, S. Liu, M. S. Kim, O. K. Park, C. Im, J. Kim, X. Qin, G. J. Lee, K. W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S. H. Kwon, N. L. Jeon, Y. M. Song, N. Lu, and D. H. Kim, Nat. Commun., 8, 1664 (2017). [DOI: https://doi.org/10.1038/s41467-017-01824-6]   DOI
13 O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photonics, 8, 128 (2014). [DOI: https://doi.org/10.1038/nphoton.2013.341]   DOI
14 A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H. Shieh, M. Aono, A. Z. Stieg, and J. K. Gimzewski, PloS One, 7, e42772 (2012). [DOI: https://doi.org/10.1371/journal.pone.0042772]   DOI
15 M. S. Komar, Autom. Control Comput. Sci., 51, 701 (2017). [DOI: https://doi.org/10.3103/S014641161707029X]   DOI
16 G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Nanotechnology, 24, 384010 (2013). [DOI: https://doi.org/10.1088/0957-4484/24/38/384010]   DOI
17 Z. Wang, S. Joshi, S. E. Savel'ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, Nat. Mater., 16, 101 (2017). [DOI: https://doi.org/10.1038/nmat4756]   DOI
18 J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, Nat. Commun., 4, 2676 (2013). [DOI: https://doi.org/10.1038/ncomms3676]   DOI
19 M. Lee, W. Lee, S. Choi, J. W. Jo, J. Kim, S. K. Park, and Y. H. Kim, Adv. Mater., 29, 1700951 (2017). [DOI: https://doi.org/10.1002/adma.201700951]   DOI
20 S. M. Kwon, S. W. Cho, M. Kim, J. S. Heo, Y. H. Kim, and S. K. Park, Adv. Mater., 31, 1906433 (2019). [DOI: https://doi.org/10.1002/adma.201906433]   DOI
21 S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen, G. Gong, W. Xue, X. Yi, J. Shang, and R. W. Li, ACS Nano, 13, 2634 (2019). [DOI: https://doi.org/10.1021/acsnano.9b00340]   DOI
22 J. Yao, N. Xu, S. Deng, J. Chen, J. She, H.P.D. Shieh, P. T. Liu, and Y. P. Huang, IEEE Trans. Electron Devices, 58, 1121 (2011). [DOI: https://doi.org/10.1109/TED.2011.2105879]   DOI
23 F. Ghasemi, Sci. Rep., 10, 11306 (2020). [DOI: https://doi.org/10.1038/s41598-020-68388-2]   DOI
24 X. Wang, H. Li, Y. Wu, Z. Xu, and H. Fu, J. Am. Chem. Soc., 136, 16602 (2014). [DOI: https://doi.org/10.1021/ja5088503]   DOI
25 G. Agnus, W. Zhao, V. Derycke, A. Filoramo, Y. Lhuillier, S. Lenfant, D. Vuillaume, C. Gamrat, and J. P. Bourgoin, Adv. Mater., 22, 702 (2010). [DOI: https://doi.org/10.1002/adma.200902170]   DOI
26 J. Ji and J. H. Choi, Adv. Mater. Interfaces, 6, 1900637 (2019). [DOI: https://doi.org/10.1002/admi.201900637]   DOI
27 Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. S. Myoung, C. L. Lee, S. H. Im, and T. W. Lee, Adv. Mater., 27, 1248 (2015). [DOI: https://doi.org/10.1002/adma.201403751]   DOI
28 J. J. Yu, L. Y. Liang, L. X. Hu, H. X. Duan, W. H. Wu, H. L. Zhang, J. H. Gao, F. Zhuge, T. C. Chang, and H. T. Cao, Nano Energy, 62, 772 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2019.06.007]   DOI
29 S. Qin, F. Wang, Y. Liu, Q. Wan, X. Wang, Y. Xu, Y. Shi, X. Wang, and R. Zhang, 2D Mater., 4, 035022 (2017). [DOI: https://doi.org/10.1088/2053-1583/aa805e]   DOI
30 M. K. Kim and J. S. Lee, Adv. Mater., 32, 1907826 (2020). [DOI: https://doi.org/10.1002/adma.201907826]   DOI
31 Z. D. Luo, X. Xia, M. M. Yang, N. R. Wilson, A. Gruverman, and M. Alexe, ACS Nano, 14, 746 (2020). [DOI: https://doi.org/10.1021/acsnano.9b07687]   DOI
32 X. Zhu and W. D. Lu, ACS Nano, 12, 1242 (2018). [DOI: https://doi.org/10.1021/acsnano.7b07317]   DOI
33 J. Gong, H. Wei, Y. Ni, S. Zhang, Y. Du, and W. Xu, Mater. Today Phys., 21, 100540 (2021). [DOI: https://doi.org/10.1016/j.mtphys.2021.100540]   DOI
34 H. Duan, L. Liang, Z. Wu, H. Zhang, L. Huang, and H. Cao, ACS Appl. Mater. Interfaces, 13, 30165 (2021). [DOI: https://doi.org/10.1021/acsami.1c05396]   DOI