• Title/Summary/Keyword: metal structure communication

Search Result 102, Processing Time 0.031 seconds

Plasma damage of MIS(TaN/$HfO_2$/Si) capacitor using antenna structure (Antenna structure를 이용한 MIS(TaN/$HfO_2$/Si) capacitor의 plasma damage 연구)

  • Yang, Seung-Kook;Lee, Seung-Yong;Yu, Han-Suk;Kim, Han-Hyung;Song, Ho-Young;Lee, Jong-Geun;Park, Se-Geun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.551-552
    • /
    • 2006
  • Plasma-induced charging damage was been measured during TaN gate electrode of MISFET(TaN/$HfO_2$/Si) or interconnection metal etching step using large antenna structures. The results of these experiments were obtained that $HfO_2$ gate dielectric layer was affected about plasma charging effects and damage increased with F-N tunneling. Therefore, the etching conditions should be optimized to avoid the defects caused by plasma charging.

  • PDF

Highly-Sensitive Gate/Body-Tied MOSFET-Type Photodetector Using Multi-Finger Structure

  • Jang, Juneyoung;Choi, Pyung;Kim, Hyeon-June;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.151-155
    • /
    • 2022
  • In this paper, we present a highly-sensitive gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector using multi-finger structure whose photocurrent increases in proportion to the number of fingers. The drain current that flows through a MOSFET using multi-finger structure is proportional to the number of fingers. This study intends to confirm that the photocurrent of a GBT MOSFET-type photodetector that uses the proposed multi-finger structure is larger than the photocurrent per unit area of the existing GBT MOSFET-type photodetectors. Analysis and measurement of a GBT MOSFET-type photodetector that utilizes a multi-finger structure confirmed that photocurrent increases in ratio to the number of fingers. In addition, the characteristics of the photocurrent in relation to the optical power were measured. In order to determine the influence of the incident the wavelength of light, the photocurrent was recorded as the incident the wavelength of light varied over a range of 405 to 980 nm. A highly-sensitive GBT MOSFET-type photodetector with multi-finger structure was designed and fabricated by using the Taiwan semiconductor manufacturing company (TSMC) complementary metal-oxide-semiconductor (CMOS) 0.18 um 1-poly 6-metal process and its characteristics have been measured.

Effects of Heating Conditions in the Straightening of Sheet Metal Distortion (박판재 변형의 가열교정에서 가열면적의 영향)

  • Park, Jun-Hyoung;Kim, Jae-Woong;Kim, Ki-Chul;Jun, Joong-Hwan
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.79-84
    • /
    • 2008
  • Use of sheet metal structure is increased in various fields such as automobile, aerospace and communication equipment industry. When this structure is welded, welding distortion is generated due to the non-uniformity of temperature distribution. Recently welding distortion becomes a matter of great importance in the structure manufacture industry because it deteriorates the product's quality by bringing about shape error. Accordingly many studies for solving the problems by controlling the welding distortion are being performed. However, it is difficult to remove all kinds of distortion by welding process, though various kinds of methods for reducing distortion are applied to production. Consequently, straightening process is operated if the high precision quality is requested after welding. The local heating method induces compression plastic deformation by thermal expansion in the heating stage and then leaves constriction of length direction in the cooling stage. Accordingly, in the case of sheet metal structure, straightening effect is expected by heating for the part of distortion. This study includes numerical analysis of straightening effect by the local heating method in distortion comes from production of welded sheet metal structure. Particularly straightening effect followed by dimensions of heating area is analyzed according to the numerical analysis. The numerical analysis is performed by constructing 3-dimensional finite element model for 0.4mm stainless steel-sheet metal. Results of this study confirm that straightening effect changes as heating area increases and the optimum value of heating area that proves the maximum straightening effect exists.

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.

Enhancement of Light Extraction from Transparent OLED Lighting Panels (투명 OLED 면광원 광 추출 향상 기술)

  • Park, June Buem;Shin, Dong-Kyun;Han, Seun Gjo;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.41-45
    • /
    • 2017
  • We have investigated the light extraction efficiency of large-area OLED lighting panels with a microlens array (MLA) or external scattering layer (ESL) by ray tracing simulation. The application of MLA and ESL to transparent OLEDs (TOLEDs) with an auxiliary metal electrode is also studied. It is found that MLA shows higher light extraction efficiency, compared with ESL. However, we have demonstrated that ESL is more suitable for TOLEDs having dual-sided equal light emission. Namely, equal light emission from the front and rear surfaces of TOLED can be achieved by increasing the scattering particle density of ESL. To compensate for a loss in light emission induced by auxiliary metal electrode, we come out with an OLED structure partially covered with MLA at the outer surface of glass substrate, which is aligned with metal electrode. With this scheme, it is observed that the light extraction efficiency can be boosted more than 20% from opaque OLED and 50% from transparent OLED.

  • PDF

Structure Modeling of 100 V Class Super-junction Trench MOSFET with Specific Low On-resistance

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • For the conventional power metal-oxide semiconductor field-effect transistor (MOSFET) device structure, there exists a tradeoff relationship between specific on-resistance ($R_{ON.SP}$) and breakdown voltage ($V_{BR}$). In order to overcome the tradeoff relationship, a uniform super-junction (SJ) trench metal-oxide semiconductor field-effect transistor (TMOSFET) structure is studied and designed. The structure modeling considering doping concentrations is performed, and the distributions at breakdown voltages and the electric fields in a SJ TMOSFET are analyzed. The simulations are successfully optimized by the using of the SILVACO TCAD 2D device simulator, Atlas. In this paper, the specific on-resistance of the SJ TMOSFET is successfully obtained 0.96 $m{\Omega}{\cdot}cm^2$, which is of lesser value than the required one of 1.2 $m{\Omega}{\cdot}cm^2$ at the class of 100 V and 100 A for BLDC motor.

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

A Study on the Electrical Properties of Transition Metal Oxides Thin Film Device (금속산화 박막 전기소자의 전기적 특성 연구)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.9-14
    • /
    • 2011
  • We have investigated the electrical properties of $AlO_x$ thin film device. The device has been fabricated top-bottom electrode structure and its transport properties are measured in order to study the resistance change. Electrical properties with linear voltage sweep on a electrodes are used to show the variation of resistance of $AlO_x$ thin film device. Fabricated $AlO_x$ thin film device with MIM structure is changed from a high conductive On-state to a low conductive Off-state by the external linear voltage sweep. It is found that the initial resistance of the $AlO_x$ thin film is low-resistance On state and reversible switching occurs. Consequently, we believe $AlO_x$ thin film is a promising material for a next-generation nonvolatile memory and other electrical applications.

Preparation of Photosensitive Crown Ether Styryl Dye (감광성 Crown Ether Styryl 염료의 합성)

  • 신종순;이용구
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.147-156
    • /
    • 1998
  • A Photosensitive Crown Ether Styryl Dye derivative(CESD) was prepared for the application and the structure of it was discussed. Light excitation causes the trans-cis isomerization of CESD yielding a conformation suitable to form a coordination bond between an anion group and a metal cation located in crown ether. Intermolecular complex stabilized the cis isomer that absorbs at a shorter wavelength in the trend-cis isomerization. Application of CESD was suggested.

  • PDF

Quasi-static Analysis on the Effect of the Finite Metal with the Anisotropic Grooved Dielectric in Microstrip Lines

  • Hong Ic-Pyo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.17-20
    • /
    • 2005
  • In this paper, we presented the quasi-static characteristics of novel microstrip lines with anisotropic grooved dielectric in finite metal. A quasi-static mode-matching method has been used to analyze this new structure and the simulation results are validated through comparison with other available results. The results in this paper show that it is possible to control the propagation characteristics of microstrip lines with the use of anisotropic grooved dielectric in finite metal. Also anisotropic grooved dielectric in microstrip line can be newly added to the design parameters of high performance three dimensional monolithic microwave circuits and other microwave applications.

  • PDF