• Title/Summary/Keyword: metal salt

Search Result 451, Processing Time 0.024 seconds

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Preparation and Characterisation of Titanium Dioxide Produced from Ti-salt Flocculated Sludge in Water Treatment (수처리 티탄염 응집 슬러지에서 생산한 산화티탄의 제조와 특성 조사)

  • Shon, Hokyong;Okour, Yousef;Saliby, Ibrahim El;Park, Jun;Cho, Dong-Lyun;Kim, Jong Beom;Park, Hee Ju;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2009
  • During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of $FeCl_3$ and $Al_2(SO_4)_3$ salts, commonly used coagulants. Incinerated sludge-$TiO_2$ showed higher surface area and photocatalytic activity than commercially available $TiO_2$. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped $TiO_2$ showed very high photocatalytic activity compared to Fe-doped $TiO_2$. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The $TiO_2$ generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. $TiCl_4$ coagulant and $TiO_2$ produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial $TiO_2$ when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of $TiO_2$ produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field.

The study of Efficient Treatment Conditions on the Composting of Foodwaste (음식쓰레기의 퇴비화공정의 적정운전조건 검토)

  • Kang, Chang-Min;Kim, Byoung-Man;Jeoung, Il-hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • The purpose of this study was to investigate the optical conditions to satisfied the salt concentration of 1% below of compost produced by using the material of foodwaste and sawdust. We changed the mixing ratios of foodwaste : sawdust from 7:3 to 3:7 and the ratios of foodwaste : rice hull from 6.5:3.5 to 4:6. We analyzed C/N, pH, temperature, water content, volatile solid, salt, heavy metals to check the degree of composting. The running conditions of composting were $80{\sim}133{\ell}/min{\cdot}m^{3}$ of air flow rate, 1:4 of time interval(on:off) and 7days of turning interval. Running times were 28days. The optical mixing ratio of foodwaste : sawdust was 6:4 when we compared many factors. Especially when the mixing ratios of foodwaste : sawdust or foodwaste : sawdust were 7:3 or 6:4, the composting was not accomplished by the reason of low C/N. The concentrations of heavy metal were sufficiently low to satisfied the satandard of organic compost. The salt concentration was 0.43%-0.46% that was the half of initial concentration. The rice hull was the good in pore rate and 통기성, and so it can used alternative material.

  • PDF

Effect of Rare Earth Elements on Uranium Electrodeposition in LiCl-KCl Eutectic Salt (LiCl-KCl 공융염에서 우라늄 전착거동에 대한 희토류 원소들의 영향)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the elctrorefining process was investigated by considering the separation factors with respect to $UCl_3$ and $CeCl_3/UCl_3$ ratio.

Loss of Li2O Caused by ZrO2 During the Electrochemical Reduction of ZrO2 in Li2O-LiCl Molten Salt (Li2O-LiCl 용융염을 이용한 ZrO2의 전기화학적 환원과정에서 발생하는 Li2O의 손실)

  • Park, Wooshin;Hur, Jin-Mok;Choi, Eun-Young;Kim, Jong-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.229-236
    • /
    • 2012
  • A molten salt technology using $Li_2O$-LiCl has been extensively investigated to recover uranium metal from spent fuels in the field of nuclear energy. In the reduction process, it is an important point to maintain the concentration of $Li_2O$. $ZrO_2$ is inevitably contained in the spent fuels because Zr is one of the main components of fuel rod hulls. Therefore, the fate of $ZrO_2$ in $Li_2O$-LiCl molten salt has been investigated. It was found that $Li_2ZrO_3$ and $Li_4ZrO_4$ were formed chemically and electrochemically and they were not reduced to Zr. The recycling of $Li_2O$ is the key mechanism ruling the total reaction in the electrolytic reduction process. However, $ZrO_2$ will have a role as a $Li_2O$ sink.

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions (합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화)

  • Kim, Na-Young;Cho, In Hak;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.211-221
    • /
    • 2016
  • Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

Effect of Calcium Chloride and Sodium Chloride on the Leaching Behavior of Heavy Metals in Roadside Sediments (염화칼슘과 소금이 도로변 퇴적물의 중금속 용출에 미치는 영향)

  • Lee Pyeong koo;Yu Youn hee;Yun Sung taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • Deicer operations provide traffic safety during winter driving conditions in urban areas. Using large quantities of de-icing chemicals (i.e., $CaCl_2$ and NaCl) can cause serious environmental problems and may change behaviors of heavy metals in roadside sediments, resulting in an increase in mobilization of heavy metals due to complexation of heavy metals with chloride ions. To examine effect of de-icing salt concentration on the leaching behaviors and mobility of heavy metals (cadmium, zinc, copper, lead, arsenic, nickel, chromium, cobalt, manganese, and iron), leaching experiments were conducted on roadside sediments collected from Seoul city using de-icing salt solutions having various concentrations (0.01-5.0M). Results indicate that zinc, copper, and manganese in roadside sediments were easily mobilized, whereas chromium and cobalt remain strongly fixed. The zinc, copper and manganese concentrations measured in the leaching experiments were relatively high. De-icing salts can cause a decrease in partitioning between adsorbed (or precipitated) and dissolved metals, resulting in an increase in concentrations of dissolved metals in salt laden snowmelt. As a result, run-off water quality can be degraded. The de-icing salt applied on the road surface also lead to infiltration and contamination of heavy metal to groundwater.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

Synthesis and characterization of LiCoO2 thin film by sol-gel process (Sol-gel법에 의한 LiCoO2 박막의 합성과 특성평가)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.94-98
    • /
    • 2014
  • $LiCoO_2$ thin film has received diverse attention as cathodes material of thin-film micro-batteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and an annealing process. Their structures were studied using X-ray diffraction and Raman Spectroscopy. The particle morphologies of these thin films were observed by Scaning electron microscope. From the results of X-ray diffractometry and Raman Spectroscopy analyses, it was found that as-grown films had the structure of spinel (LT-$LiCoO_2$) and layered-Rock-salt (HT-$LiCoO_2$) at $550^{\circ}C$ and $750^{\circ}C$ respectively. The annealed films at $650^{\circ}C$ were presumed to be the mixed state of these two types. Throlugh the scanning electron microscope, It was estimated that the particle size in as-grown films at $750^{\circ}C$, were larger crystilline particle than in those at the other lower temperature and well distributed in the film.