Preparation and Characterisation of Titanium Dioxide Produced from Ti-salt Flocculated Sludge in Water Treatment

수처리 티탄염 응집 슬러지에서 생산한 산화티탄의 제조와 특성 조사

  • Shon, Hokyong (Faculty of Engineering, University of Technology) ;
  • Okour, Yousef (Faculty of Engineering, University of Technology) ;
  • Saliby, Ibrahim El (Faculty of Engineering, University of Technology) ;
  • Park, Jun (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Cho, Dong-Lyun (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Jong Beom (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University,Photo & Environmental Technology Co. Ltd.) ;
  • Park, Hee Ju (Photo & Environmental Technology Co. Ltd.) ;
  • Kim, Jong-Ho (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University,Photo & Environmental Technology Co. Ltd.)
  • 손호경 (시드니공과대학교 환경공학부) ;
  • ;
  • ;
  • 박준 (전남대학교 응용화학공학부 촉매연구소) ;
  • 조동련 (전남대학교 응용화학공학부 촉매연구소) ;
  • 김종범 (전남대학교 응용화학공학부 촉매연구소,(주)빛과환경 환경기술연구소) ;
  • 박희주 ((주)빛과환경 환경기술연구소) ;
  • 김종호 (전남대학교 응용화학공학부 촉매연구소,(주)빛과환경 환경기술연구소)
  • Received : 2009.05.28
  • Published : 2009.06.10

Abstract

During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of $FeCl_3$ and $Al_2(SO_4)_3$ salts, commonly used coagulants. Incinerated sludge-$TiO_2$ showed higher surface area and photocatalytic activity than commercially available $TiO_2$. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped $TiO_2$ showed very high photocatalytic activity compared to Fe-doped $TiO_2$. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The $TiO_2$ generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. $TiCl_4$ coagulant and $TiO_2$ produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial $TiO_2$ when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of $TiO_2$ produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field.

지난 수 년간 본 연구팀은 새로운 티탄염 응집제를 이용하여 폐수를 응집한 후 생산된 슬러지에서 산화티탄을 생산하는 연구를 진행하였다. 티탄염의 응집 효율은 일반적으로 많이 사용되는 철염과 알루미늄염 응집제와 비슷하였으며 슬러지를 소성하여 제조한 산화티탄은 상용 산화티탄보다 더 넓은 표면적과 높은 광촉매 활성을 나타내었다. 산화티탄의 광촉매 활성 향상과 pH를 높이기 위해 응집보조제로서 철, 알루미늄, 칼슘을 사용하여 광촉매 활성이 높은 Fe, Al, Ca 도핑 산화티탄을 제조하였다. 이 기술의 실제 적용 가능성을 확인하기 위하여 염색폐수 파일럿 장치에 적용한 결과, 우수한 유기물 제거 능력과 빠른 응집체 형성이 확인되었다. 염색폐수 슬러지에서 제조한 산화티탄은 높은 유기물 제거 광촉매 활성과 물 광분해에 의해 수소를 생성하였다. 티탄염 응집제와 슬러지에서 제조한 산화티탄의 독성을 D. magna로 조사한 결과, 낮은 독성을 확인할 수 있었다. 이 총설은 미래의 슬러지 재활용 기술로 높은 적용 가능성을 가지는 티탄염으로 제조한 산화티탄의 특성을 체계적으로 정리하였다.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Chonnam National University,

References

  1. L. Rizzo, V. Belgiorno, M. Gallo, and S. Meri$\c{c}$, Desal., 176, 177 (2005) https://doi.org/10.1016/j.desal.2004.10.020
  2. J. DeWolfe, B. Dempsey, M. Taylor, and J. W. Potter, Guidance manual for coagulant changeover, 2, 25, American Water Works Association Press, Denver (2003)
  3. H. K. Shon, S. Puntsho, Y. Okour, D.-L. Cho, K. S. Kim, H. J. Li, S. H. Na, J. B. Kim, and J.-H. Kim, J. Korean Ind. Eng. Chem., 19, 1 (2008)
  4. M. Kaneko and I. Okura, Photocatalysis: Science and Technology, Springer, Tokyo (2002)
  5. H. K. Shon, S. Vigneswaran, In S. Kim, J. Cho, G. J. Kim, J. B. Kim, and J.-H. Kim, Environ. Sci. Technol., 41, 1372 (2007) https://doi.org/10.1021/es062062g
  6. W. V. Upton and A. M. Buswell, Ind. Eng. Chem., 29, 870 (1937) https://doi.org/10.1021/ie50332a006
  7. E. P. Lokshin and M. L. Belikov, Russ. J. Appl. Chem., 76, 466 (2003)
  8. Y. Okour, H. K. Shon, and I. E. Saliby, The first Asia-Pacific Young Water Professionals Conference on Water Challenges in Asia-Pacific Region, Gwangju Institute of Science and Technology (GIST), Gwangju City
  9. J. B. Kim, H. J. Park, S. H. Na, H. K. Shon, G. J. Kim, and J.-H. Kim, International Conference on Nano Science and Nano Technology (GJ-NST), Chonnam National University, Gwangju, Korea, November pp. 6-7 (2008)
  10. H. K. Shon, S. Vigneswaran, J. Kandasamy, J. B. Kim, H. J. Park, S. W. Cho, and J.-H. Kim, J. Ind. Eng. Chem., (2009) In press
  11. C. Suryanarayana, Int. Mater. Rev., 40, 41 (1995) https://doi.org/10.1179/095066095790151106
  12. Z. M. Wang, G. Yang, P. Biswas, W. Bresser, and P. Boolchand, Powder Technol., 114, 197 (2001) https://doi.org/10.1016/S0032-5910(00)00321-1
  13. W. C. Hung, S. H. Fu, J. J. Tseng, H. Chu, and T. H. Ko, Chemo., 66, 2142 (2007)
  14. Y. Okour, I. E. Saliby, H. K. Shon, S. Vigneswaran, J.-H. Kim, J. Cho, and In S. Kim, Desal., (2009) In press
  15. B. C. Lee, S. Kim, H. K. Shon, S. Vigneswaran, S. D. Kim, J. Cho, In S. Kim, K. H. Choi, J. B. Kim, H. J. Park, and J.-H. Kim, J. Nanopart. Res., (2009) In press
  16. El Saliby, Y. H. Okour, H. K. Shon, S. Vigneswaran, J. Kandasamy, and J.-H. Kim, Journal of AOTs, (2009) In press
  17. A. Fujishima and K. Honda, Nature, 238, 37 (1972) https://doi.org/10.1038/238037a0
  18. J. Akikusa and S. U. M. Khan. International Journal of Hydrogen Energy, 22, 882 (1997)
  19. P. R. Mishra, P. K. Shukla, A. K. Singh, and O. N. Srivastava, International Journal of Hydrogen Energy, 28, 1089 (2003)
  20. Y. A. Shaba and S. U. M. Khan, In. J. Hydrogen Energy, 33, 1118 (2008) https://doi.org/10.1016/j.ijhydene.2007.11.026
  21. S. M. Ji, H. Jun, J. S. Jang, H. C. Son, P. H. Borse, and J. S. Lee, J. Photochem. Photobiol. A, 189, 141 (2007) https://doi.org/10.1016/j.jphotochem.2007.01.011
  22. A. J. Bard, J. Phys. Chem., 86, 172 (1982) https://doi.org/10.1021/j100391a008
  23. A. A. Nada, M. H. Barakat, H. A. Hamed, N. R. Mohamed, and T. N. Veziroglu, In. J. Hydrogen Energy, 30, 687 (2005) https://doi.org/10.1016/j.ijhydene.2004.06.007
  24. S. S. Rayalu, N. Dubey, N. K. Labhsetwar, S. Kagne, and S. Devotta, In. J. Hydrogen Energy, 32, 2776 (2007) https://doi.org/10.1016/j.ijhydene.2007.03.028
  25. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renewable Sustainable Energy Rev., 11, 401 (2007) https://doi.org/10.1016/j.rser.2005.01.009
  26. Y. Z. Yang, C.-H. Chang, and H. Idriss, Appl. Catal., BI 67, 217 (2006) https://doi.org/10.1016/j.apcatb.2006.05.007
  27. M. S. Park and M. Kang, Mater. Lett., 62, 183 (2008) https://doi.org/10.1016/j.matlet.2007.04.105
  28. Y. Ikuma and H. Bessho, In. J. Hydrogen Energy, 32, 2689 (2007) https://doi.org/10.1016/j.ijhydene.2006.09.024
  29. F. Alonso, P. Riente, F. Rodriguez-Reinoso, J. Ruiz-Martinez, A. Sepulveda-Escribano, and M. Yus, J. Catal., 260, 113 (2008) https://doi.org/10.1016/j.jcat.2008.09.009
  30. W. Sun, S. Zhang, Z. Liu, C. Wang and Z. Mao, Int. J. Hydrogen Energy, 33, 1112 (2008) https://doi.org/10.1016/j.ijhydene.2007.12.059
  31. H. J. Choi and M. Kang, Int. J. Hydrogen Energy, 32, 3841 (2007) https://doi.org/10.1016/j.ijhydene.2007.05.011
  32. C. Tao, W. Guopeng, F. Zhaochi, H. Gengshen, S. Weiguang, Y. Pinliang and L. Can, Chin. J. Catal., 29, 105 (2008) https://doi.org/10.1016/S1872-2067(08)60019-4
  33. H. Yi, T. Peng, D. Ke, L. Zan, and C. Yan, In. J. Hydrogen Energy, 33, 672 (2008) https://doi.org/10.1016/j.ijhydene.2007.10.034
  34. A. Patsoura, D. I. Kondarides, and X. E. Verykios, Catal. Today, 124, 94 (2007) https://doi.org/10.1016/j.cattod.2007.03.028
  35. H. K. Shon, S. Vigneswaran, Y. Okour, J. B. Kim, J.-H. Kim, In S. Kim, and J. Cho, The first Asia-Pacific Young Water Professionals Conference on Water Challenges in Asia-Pacific Region, Gwangju Institute of Science and Technology (GIST), Gwangju City
  36. D. W. Johnson, M. V. Haley, G. S. Hart, W. T. Muse, and W. G. Landis, J. Appl. Toxicol., 6, 225 (1986) https://doi.org/10.1002/jat.2550060313
  37. S. B. Lovern and R. Klaper, Environ. Toxicol. Chem., 25, 1132 (2006) https://doi.org/10.1897/05-278R.1