• Title/Summary/Keyword: metal oxides.

Search Result 666, Processing Time 0.031 seconds

Redox Property of the Supported Fe2O3 and WO3 with TPO/TPR (TPO/R를 이용한 [Fe2O3, WO3]/지지체의 산화, 환원 특성 연구)

  • Kim, Jae-Ho;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Young-Ho;Kim, Chang-Hee;Cho, Won-Chul;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both $CO_2$ capture and hydrogen production. In this study, redox property of $Fe_2O_3$ and $WO_3$ supported with $ZrO_2$ and $MgAl_2O_4$ were studied with temperature programmed oxidation/reduction (TPO/R) experiment. All metal oxides were prepared by ball mill method. Metal oxides supported with $ZrO_2$ showed the good redox property in TPO and TPR tests. Reduction behavior was matched well the theoretical reduction mechanism. Metal oxides supported with $MgAl_2O_4$ formed a solid solution ($MgFe_{0.6}Al_{1.4}O_4$, $MgWO_4$). $Fe_2O_3$ showed more narrow reaction range and lower reaction temperature than $WO_3$.

Sonochemical Synthesis of Fullerene Oxides $[C_{70}O_n](n=1{\sim}2)$ Using Metal Hexacarbonyl Complexes $M(CO)_6$ (M=Cr, Mo, W) Under Air Atmosphere (공기 중에서 금속 헥사카르보닐 착물 $M(CO)_6$ (M=Cr, Mo, W)를 이용한 폴러렌 산화물 $[C_{70}O_n](n=1{\sim}2)$의 초음파화학 합성)

  • Ko, Weon-Bae;Park, Young-Hwan
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.174-180
    • /
    • 2005
  • Sonochemical synthesis of fullerene oxides $[C_{70}O_n](n=1{\sim}2)$ by fullerene$[C_{70}]$ and metal hexacarbonyl complexes $M(CO)_6$(M=Cr, Mo, W) took place under air atmosphere. The reactivity of fullerene$[C_{70}]$ and several metal hexacarbonyl complexes $M(CO)_6$(M=Cr, Mo, W) under same ultrasonic condition increased in the order of $Mo(CO)_6$ > $W(CO)_6$ > $Cr(CO)_6$. The MALDI-TOF-MS, UV-visible spectra, and HPLC analysis confirmed that the products of sonochemical reaction were $[C_{70}O_n](n=1{\sim}2)$.

Highly Ordered Mesoporous Metal Oxides as Catalysts for Dehydrogenation of Cyclohexanol (메조기공을 갖는 다양한 금속 산화물 촉매를 이용한 사이클로헥사놀의 탈수소화 반응)

  • Lee, Eunok;Jin, Mingshi;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.518-522
    • /
    • 2013
  • Cyclohexanone is important intermediate for the manufacture of caprolactam which is monomer of nylron. Cyclohexanone is generally produced by dehydrogenation reaction of cyclohexanol. In this study, highly mesoporous metal oxides such as meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$ and meso-NiO were synthesized using mesoporous silica KIT-6 as a hard template via nano-replication method for dehydrogenation of cyclohexanol. The overall conversion of cyclohexanol followed a general order: meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO. In particular, meso-$WO_3$ significantly showed higher activity than the other mesoporous metal oxides. Therefore, the meso-$WO_3$ has wide range of application possibilities for dehydrogenation of cyclohexanol.

Preparation of Three-Dimensional Graphene/Metal Oxide Nanocomposites for Application of Supercapacitors (슈퍼커패시터 응용을 위한 3차원 그래핀/금속 산화물 나노복합체 제조)

  • Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.521-525
    • /
    • 2015
  • Graphene-based electrode materials have been widely explored for supercapacitor applications due to their unique two-dimensional structure and properties. In particular, Three-dimensional (3D) graphene materials are of great importance for preparing electrode materials because they can provide large surface area, efficient and rapid electron and ion transfer, and mechanical stability. Recently, a number of 3D hybrid architecture of graphene/metal oxides have been developed to increase simultaneously energy and power densities of supercapacitors. This review presents the recent progress of 3D nanocomposites based on graphene and metal oxides. Preparation methods and structures of these 3D nanocomposites and their great potential in supercapacitor applications have been summarized.

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Contamination structure and process on SUS 316 under UHV, HV and air (초고진공, 고진공, 대기압에서 SUS 316의 오염 구조와 오염 과정 연구)

  • 서지근;이규장;신용현;홍승수;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • The contamination structure and process on SUS 316 under various exposure conditions were investigated using x-ray photoelectron spectroscopy. The metal-oxide, metal-H-oxides, CO, COH, and $C_xH_y$ are the main components of contaminants on the SUS surface. The compositional profiles of the contaminants are shown to be $C_xH_y$/CO(COH)/metal-oxide on SUS. The contamination proceeds in two steps. The oxidation of the metallic constituents followed by adsorption of hydrocarbons. Under UHV conditions the contamination is mainly due to the oxidation, and, as the exposure time increases, the oxidation continues. In HV or higher pressure, most of the oxides are formed almost immediately after exposure and as the exposure time increases the contamination of hydrocarbons continues to grow. For the SUS sample exposed to atmosphere, the metal oxide is distributed deep inside the surface with an exponentially decreasing concentration, and its thickness is nearly in the order of photoelectron mean free path. It is also seen that the Fe oxide is segregated over Cr oxide in the highly oxidized samples.

  • PDF

Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review

  • Lee, Mi Gyoung;Park, Jong Seong;Jang, Ho Won
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.185-202
    • /
    • 2018
  • Photoelectrochemical (PEC) cells can convert solar energy, the largest potential source of renewable energy, into hydrogen fuel which can be stored, transported, and used on demand. In terms of cost competitiveness compared with fossil fuels, however, both photocatalytic efficiency and cost-effectiveness must be achieved simultaneously. Improvement of cost-effective, scalable, versatile, and eco-friendly fabrication methods has emerged as an urgent mission for PEC cells, and solution-based fabrication methods could be capable of meeting these demands. Herein, we review recent challenges for various nanostructured oxide photoelectrodes fabricated by solution-based processes. Hematite, tungsten oxide, bismuth vanadate, titanium oxide, and copper oxides are the main oxides focused on, and various strategies have been attempted with respect to these photocatalyst materials. The effects of nanostructuring, heterojunctions, and co-catalyst loading on the surface are discussed. Our review introduces notable solution-based processes for water splitting photoelectrodes and gives an outlook on eco-friendly and cost-effective approaches to solar fuel generation and innovative artificial photosynthesis technologies.

Fabrication of Sn-Sb Based Powder by Carbothermal Reduction of Spherical Ultrafine Metal Oxides (구형 초미립 금속산화물의 Carbothermal 환원에 의한 Sn-Sb계 분말 합성 및 리튬 이차 전지 음극재료 특성 평가)

  • Hong, Seong-Hyeon;Bae, Jong-Soo;Chin, Young-Mi;Kwon, Hae-Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.324-330
    • /
    • 2006
  • In this study, carbothermal reduction method was employed to synthesis Sn-Sb alloy powders from chief metal oxides with ultrafine sizes. The Sn-Sb powders consisting of ultrafine particles were formed at $800{\sim}900^{\circ}C$ by reduction of oxides. Those powders have high initial discharge capacities ($570{\sim}637\;mAh/g$) and discharge capacities of those powders maintain initial capacity after 20 cycle due to existence of ultrafine particles in powders and alloying effect of Sn-Sb.

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.