Browse > Article
http://dx.doi.org/10.14478/ace.2022.1073

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology  

Alagumalai, Krishnapandi (Department of Biological and Environmental Engineering, Semyung University)
Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Publication Information
Applied Chemistry for Engineering / v.33, no.4, 2022 , pp. 352-366 More about this Journal
Abstract
Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.
Keywords
Cobalt; Strontium; Graphene oxide; Metal-organic frame-work; Metal oxides; Modified materials;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Zhang, P. Gu, Z. Zhang, J. Liu, L. Dong, and G. Zhang, Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent, Coatings, 351, 668-677 (2018).
2 X. Liu, J. Wang, Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization, Environ. Sci. Pollut. Res., 28, 3182-3195 (2021).   DOI
3 W. Mu, Q. Yu, R. Hu, X. Li, H. Wei, and Y. Jain, Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium, Appl. Surf. Sci., 423, 1203-1211 (2017).   DOI
4 N. Abdullah, N. Yusof, W. J. Lau, J. Jaafar, and A. F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76, 17-38 (2019).   DOI
5 B. Esser, and M. Hermann, Buckling up zigzag nanobelts, Nat. Chem., 13, 209-211(2021).   DOI
6 Y. Yu, L. Zhou, J. Tang, P. Wu, L. Feng, B. Ge, H. Chen, J. Hu, S. Song, and T. Zeng, Effective removal of Co(II) and Sr(II) from radiocative wastes using covalent triazine frameworks: Kinetics and isotherm studies, Sep. Purif. Technol., 277, 119633 (2021).   DOI
7 G. Yuan, H. Tu, M. Li, J. Liu, C. Zhao, J. Liao, Y. Yang, J. Yang, and N. Liu, Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution, Appl. Surf. Sci., 466, 903-910 (2019).   DOI
8 L. P. Lingamdinne, S. Lee, Y. Y. Chang, J. R. Koduru, and J. K. Yang, Facile synthesis of lanthanum hydroxide doped graphene oxide for scavenged of radioactive and heavy elements from water, Synth. Met., 273, 116691 (2021).   DOI
9 D. Alby, C. Charnay, M. Heran, B. Prelot, and J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review, J. Hazard. Mater., 344. 511-530 (2018).   DOI
10 J. S. Hu, L. Zhong, W. Song, and L. Wan, Synthesis and hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 20, 2977-2982 (2008).   DOI
11 P. Yang, S. Li, C. Liu, C. Shen, and X. Liu, Water-endurable intercalated graphene oxide adsorbent with highly efficient uranium capture from acidic wastewater, Sep. Purif. Technol., 263, 118364 (2021).   DOI
12 J. Wang, and S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol., 52, 328-336 (2020).   DOI
13 Y. Rong, S. Li, J. Niu, Z. Wang, X. Hao, C. Song, T. Wang, and G. Guan, Carbon-based electroactive ion exchange materials: Ultrahigh removal efficiency and ion selectivity for rapid removal of Cs+ ions, Sep. Purif. Technol., 274, 119056 (2021).   DOI
14 K. S. Hashim, A. Shaw, R. AlKhaddar, P. Kot, and A. Al-Shamma'a, Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment, J. Clean. Production, 280, 124427 (2021).   DOI
15 P. Liu, P. Yang, J. Yang, and J. Gu, One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba2+, Chem. Commun., 57, 5822-5825 (2021).   DOI
16 Y. He, Z. Wang, H. Wang, Z. Wang, G. Zeng, P. Xu, D. Huang, M, Chen, B. Song, H. Qin, and Y. Zhao, Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications, Coord. Chem. Rev., 429, 213618 (2021).   DOI
17 B. Assfour, T. Assaad, and A. Odeh, In silico screening of metal organic framework for iodine capture and storage, Chem. Phys. Lett., 610, 45-49 (2014).   DOI
18 H. S. Hassan, W. E Madcour, and E. K. Elmaghraby, Removal of radioactive cesium and europium from aqueous solutions using activated Al2O3 prepared by solution combustion, Mater. Chem. Phys., 234, 55-66 (2019).   DOI
19 A. Ivanets, N. Kitikova, I. Shashkova, A. Radkevich, T. Stepanchuk, M. Maslova, and N. Mudruk, One-Stage adsorption treatment of liquid radioactive wastes with complex dadionuclide composition, Wat. Air Soil Poll., 4, 231 (2020).
20 W. Zeng, Z. Hu, J. Luo, X. Hou, and X. Jiang, Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS, Anal. Chim. Acta, 1191, 339361 (2022).   DOI
21 S. Bao, Y. Wang, Z. Wei, W. Yang, and Y. Yu, Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance, J. Hazard. Mater., 424, 127370 (2022).   DOI
22 F. Majid, M. D. Ali, S. Ata, I. Bibi, A. Malik, A. Ali, N. Alwadai, H. Albalawi, M. Shoaib, S. A.Bukhar, and M. Iqbal, Fe3O4/graphene oxide/Fe4[Fe(CN)6]3 nanocomposite for high performance electromagnetic interference shielding, Ceram. Int., 47, 11587- 11595 (2021).   DOI
23 S. Velusamy, A. Roy, S. Sundaram, and T. K. Mallick, A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment, Chem. Rec., 21, 1570-1610 (2021).   DOI
24 T. Wen, Z. Zhao, C. Shen, J. Li, X. Tan, A. Zeb, X. Wang, and A. W. Xu, Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils, Sci. Rep., 6, 1-10 (2016).   DOI
25 L. Xiuling, Preparation of graphene oxide-molecular sieve composite adsorbent and its adsorption performance for heavy metals in water, earth, Environ. Sci., 784, 012022 (2021).
26 S. Liu, S. Kang, H. Wang, G. Wang, H. Zhao, and W. Cai, Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances, Chem. Eng. J., 289, 219-230 (2016).   DOI
27 J. Liao, P. Liu, Y. Xie, and Y. Zhang, Metal oxide aerogels: Preparation and application for the uranium removal from aqueous solution, Sci. Total Environ., 768, 144212 (2021).   DOI
28 H. W. Kang, J. H. Choi, K. R. Lee, and H. S. Park, Addition of transition metal oxides on silver tellurite glass for radioactive iodine immobilization, J. Nucl. Mater., 543, 152635 (2021).   DOI
29 U. H. Kaynar, S. C. Kaynar, E. E. Karali, M. Ayvacikli, and N. Can, Adsorption of thorium (IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: Empirical modeling and process optimization by response surface methodology (RSM), Appl. Radiat. Isot., 178, 109955 (2021).   DOI
30 X. Yang, Y, Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y. S. Ok, Y. Jiang, and B. Gao, Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review, Chem. Eng. J., 366, 608-621 (2019).   DOI
31 C. Guo, M. Yuan, L. He, L. Cheng, X. Wang, N. Shen, F. Ma, G. Huang, and S. Wang, Efficient capture of Sr2+ from acidic aqueous solution by an 18-crown-6-ether-based metal organic framework, Crystal Eng. Commun., 23, 3349-3355 (2021).   DOI
32 A. I. Ivanets, V. G. Prozorovich, T. F. Kouznetsova, A. V. Radkevich, and A. M. Zarubo, Mesoporous manganese oxides prepared by sol-gel method: Synthesis, characterization and sorption properties towards strontium ions, Environ. Nanotechnol., Monit. Manag., 6, 261-269 (2016).
33 A. E. Ersundu, M. Buyukyildiz, M. C. Ersundu, E. Sankar, and M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy, 104, 280-287 (2018).   DOI
34 G. Yuan, H. Tu, J .Liu, C. Zhao, Y. Yang, J. Yang, and N. Liu, A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions, Chem. Eng. J., 333, 280-288 (2018).   DOI
35 P. Asgari, S. H. Mousavi, H. Aghayan, H. Ghasemi, and T. Yousefi, Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions, Microchem. J., 150, 104188 (2019).   DOI
36 X, Wang, Y. Liu, H. Pang, S. Yu, Y. Ai, X. Ma, G. Song, T. Hayat, A. Alsaedi, and X. Wang, Effect of graphene oxide surface modification on the elimination of Co(II) from aqueous solutions, Chem. Eng. J., 344, 380-390 (2018).   DOI
37 N. K. Gupta, H. Viltres, Y. C. Lopez, G. Salunkhe, and A. Sengupta, Magnetic CoFe2O4/Graphene oxide nanocomposite for highly efficient separation of f-block elements, Surf. Interfaces, 23, 100916 (2021).   DOI
38 X. Liu, R. Ma, X. Wang, Y. Ma, Y. Yang, L. Zhuang, S. Zhang, R. Jehan, J. Chen, and X. Wang, Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review, Environ. Pollut., 252, 62-73 (2019).   DOI
39 L. P. Lingamdinne, J. R. Koduru, H. Roh, Y. L. Choi, Y. Y. Chang, and J. K. Yang, Adsorption removal of Co(II) from waste-water using graphene oxide, Hydrometallurgy 165, 90-96 (2016).   DOI
40 M. Xing, S. Zhuang, and J. Wang, Adsorptive removal of strontium ions from aqueous solution by graphene oxide, Environ. Sci. Pollut. Res., 26, 29669-29678 (2019).   DOI
41 A. Y. Romanchuk, A. S. Slesarev, S. N. Kalmykov, D. V. Kosynkin, and J. M. Tour, Graphene oxide for effective radionuclide removal, Phys. Chem. Chem. Phys., 15, 2321-2327, (2013).   DOI
42 M. I. A. A. Maksoud, N. M. Sami, H. S. Hassan, M. Bekhit, and A. H. Ashour, Novel adsorbent based on carbon-modified zirconia/spinel ferrite nanostructures: Evaluation for the removal of cobalt and europium radionuclides from aqueous solutions, J. Colloid Interface Sci., 607, 111-124 (2022).   DOI
43 R. D. Ambashta and M. E. T. Sillanpaa, Membrane purification in radioactive waste management: a short review, J. Environ. Radioactivity, 105, 76-84 (2012).   DOI
44 H. S. Hassan, D. M. Imam, S. H. Kenawy, G. T. El-Bassyouni, and E. M. A. Hamzawy, Sorption of radioactive cobalt onto nano calcium silicate/CuO composite modified by humic acid, J. Radiaoanal. Nucl. Chem., 321, 391-401(2019).   DOI
45 G. Yuan, Y. Tian, J. Liu, H. Tu, J. Liao, J. Yang, Y. Yang, D. Wang, and N. Liu, Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution, Chem. Eng. J., 326, 691-699 (2017).   DOI
46 B. Isik, A. E. Kurtoglu, G. Gurdag, and G. Keceli, Radioactive cesium ion removal from wastewater using polymer metal oxide composites, J. Hazard. Mater., 403, 123652 (2021).   DOI
47 J. Ma, C. Wang, W. Xi, Q. Zhao, S. Wang, M. Qui, J. Wang, and X. Wang, Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: A Review, ACS ES&T Eng., 1, 685-705 (2021).   DOI
48 F. V. Alamdarlo, G. Solookinejad, F. Zahakifar, M. R. Jalal, and M. Jabbari, Study of kinetic, thermodynamic, and isotherm of Sr adsorption from aqueous solutions on graphene oxide (GO) and (aminomethyl)phosphonic acid-graphene oxide (AMPA-GO), J. Radioanal. Nucl. Chem., 329, 1033-1043 (2021).   DOI
49 Y. Zhao, C. Guo, H. Fang, and J. Jiang, Competitive adsorption of Sr(II) and U(VI) on graphene oxide investigated by batch and modeling techniques, J. Mol. Liq., 222, 263-267 (2016).   DOI
50 S. Wang, X. Li, Y. Liu, C. Zhang, X. Tan, G. Zeng, B. Song, and L. Jiang, Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review, J. Hazard. Mater., 342, 177-191 (2018).   DOI
51 F. Jia, Y. Yin, and J. Wang, Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation, Prog. Nucl. Energy, 103, 20-27 (2018).   DOI
52 M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211, 317-331 (2012).   DOI
53 N. M. Izzudin, A. A. Jalil, F. F. A. Aziz, M. S. Azami, M. W. Ali, N. S. Hassan, A. F. A. Rahman, A. A. Fauzi, and D. V. N, Vo, Simultaneous remediation of hexavalent chromium and organic pollutants in wastewater using period 4 transition metal oxide-based photocatalysts: a review, Environ. Chem. Lett., 19, 4489-4517 (2021).   DOI
54 D. Yilmaz and A. Gurol, Efficient removal of iodine-131 from radioactive waste by nanomaterials, Instrum. Sci. Technol., 49, 45-54 (2021).   DOI
55 J. Lehto, R. Koivula, H. Leinonen, E. Tusa, and R. Harjula, Removal of radionuclides from fukushima daiichi waste effluents, Sep. Purif. Rev., 48,122-142 (2019).   DOI
56 Y. Lu, J. Yuan, D. Du, B. Sun, and X. Yi, Monitoring long-term ecological impacts from release of Fukushima radiation water into ocean, Geogr. Sustain., 2, 95-98 (2021).
57 T. Wen, X. Wu, M. Liu, Z. Xing, X. Wang, and A. Xu, Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites, Dalton Trans., 43, 7464-7472 (2014).   DOI
58 S. Zhuang and J. Wang, Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite, Environ. Prog. Sustain. Energy, 38, 32-41 (2019).
59 H. A. EI-saied, A. M. Shahr EI-Din, B. A. Masry, and A. M. Ibrahim, A promising superabsorbent nanocomposite based on grafting biopolymer/nanomagnetite for capture of 134Cs, 85Sr and 60Co radionuclides, J. Polymer Environ., 28, 1749-1765 (2020).   DOI
60 M. F. Attallah, A. A. Helal, M. M. Hamed, and K. F. Allan, Elaboration of composite based on the incorporation of marble particles into polymeric framework for the removal of Co (II) and Eu (III), Radiochim. Acta, 2, 121-131 (2022).
61 H. Benaissa, N. Nasrallah, A. Abdi, M. Kebir, B. Guedioura, and M. Trari, Investigation on removing of 60Co2+ radionuclide from radioactive waste water by Fe (III)-modified Algerian bentonite, Sci. Total. Environ., 3, 1497-1511 (2021).
62 F. Leon, A. Ramos, J. Vaswani, C. Mendieta, and S. Brito, Climate change mitigation strategy through membranes replacement and determination methodology of carbon footprint in reverse osmosis ro desalination plants for islands and isolated territories, Water, 13, 1-17 (2021).   DOI
63 M. E. Mahmoud, E. A. Allam, E. A. Saad, A. M. EI-Khatib, and M. A. Soliman, Intercalation of nanopolyaniline with nanobentonite and manganese oxide nanoparticles as a novel nanocomposite to remediate cobalt/zinc and their radioactive nuclides 60Co/66Zn, J. Polymer Environ., 27, 421-433 (2019).   DOI
64 M. Su, Z. Liu, Y. Wu, H. Peng, T. Ou, S. Huang, G. Song, L. Kong, N. Chen, and D. Chen, Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution, Environ. Pollut., 268, 115786 (2021).   DOI
65 X. Zhong, W. Liang, Z. Lu, M. Qiu, and B. Hu, Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal, J. Mol. Liq., 323, 114603 (2021).   DOI
66 I. Ali, A. V. Babkin, I. V. Burakova, and A. E. Burakov, E. A. Neskorommaya, A. G. Tkachev, S. Panglisch, N. AlMasoud, and T. S. Alomar, Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption, J. Mol. Liq., 329, 115584 (2021).   DOI
67 L. Li, H. Wu, J. Chen, L. Xu, G. Sheng, P. Fang, K. Du, C. Shen, and X. Guo, Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions, J. Mol. Liq., 332, 1-9 (2021).
68 E. A. Abdel-Galil, H. Moloukhia, M. Abdel-Khalik, and S. S. Mahrous, Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions, Appl. Radiat. Isot., 140, 363-373 (2018).   DOI
69 S. H. Frisbie, E. J. Mitchell, and B. Sarkar, Urgent need to reevaluate the latest world health organization guidelines for toxic inorganic substances in drinking water, Environ. Health, 14, 1-15 (2015).   DOI
70 A. Tayyebi, M. Outokesh, S. Moradi, and A. Doram, Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions, Appl. Surf. Sci., 353, 350-362 (2015).   DOI
71 A. Rengaraj, Y. Haldorai, P. Puthiaraj, S. K. Hwang, T. Ryu, J. Shin, Y. Han, W. Ahn, and Y. S. Huh, Covalent triazine polymer-Fe3O4 nanocomposite for strontium ion removal from seawater, Ind. Eng. Chem. Res., 56, 4984-4992 (2017).   DOI
72 J. A. Abdullah, A. G. Al Lafi, W. A. Masri, Y. Amin, and T. Alnama, Adsorption of Cesium, Cobalt, and Lead onto a Synthetic Nano Manganese Oxide: Behavior and Mechanism, Water Air Soil. Pollut., 227, 1-14 (2016).   DOI
73 M. R. Pourjavid, A. A. Sehat, M. Arabieh, S. R. Yousefi, M. H. Hosseini, and M. Rezaee, Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide, Mater. Sci. Eng. 35, 370-378 (2014).   DOI
74 L. Zhang, J. Wei, X. Zhao, F. Li, F. Jianng, M. Zhang, and X. Cheng, Competitive adsorption of strontium and cobalt onto tin antimonate, Chem. Eng. J., 285, 679-689 (2016).   DOI
75 B. Kiran, A. Kaushik, and C. P. Kaushik, Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium., Chem. Eng. J., 126, 147-153 (2007).   DOI
76 J. Sun, L. Liu, X. Zhao, S. Yang, S. Komarrneni, and D. Yang, Capture of radioactive cations from water using niobate nanomaterials with layered and tunnel structures, RSC Adv., 5, 75354-75359 (2015).   DOI
77 C. H. Nguyen, M. L. Tran, T. T. V. Tran, and R. S. Juang, Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites, J. Taiwan Inst. Chem. Eng., 119, 80-89 (2021).   DOI
78 J. Y. Lim, N. M. Mubarak, E. C. Abdullah, S. Nizamuddin, M. Khalid, and Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review, J. Ind. Eng. Chem., 66, 29-44 (2018).   DOI
79 G. Zhao, J. Li, X. Ren, C. Chen, and X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol., 45, 10454-10462 (2011).   DOI
80 X. Wang, L. Chen, L. Wang, Q. Fan, D. Pan, J. Li, F. Chi, S. Yu, C. Xiao, F. Luo, J. Wang, X. Wang, C. Chen, W. Wu, W. Shi, S. Wang, and X. Wang, Synthesis of novel nanomaterials and their application in efficient removal of radionuclides, Sci. China Chem., 8, 933-967 (2019).
81 M. Li, G. Yuan, Y. Zeng, H. Peng, Y. Yang, J. Liao, J. Yang, and N. Liu, Efficient removal of Co(II) from aqueous solution by flexible metal-organic framework membranes, J. Mol. Liq., 324, 114718 (2021).   DOI
82 A. Ivanets, N. Kitikova, I. Shashkova, A. Radkevich, L. Shemet, and M. Sillanppa, Effective removal of 60Co from high-salinity water by Ca-Mg phosphate sorbents, J. Radioanal. Nucl. Chem., 318, 2341-2347 (2018).   DOI
83 J. Li, J. Jin, Y. Zou, H. Sun, X. Zeng, X. Huang, M. Feng, and M.G. Kanatzidis, Efficient removal of Cs+ and Sr2+ Ions by Granulous (Me2NH2)4/3(Me3NH)2/3Sn3S7·1.25H2O/Polyacrylonitrile Composite, ACS Appl. Mater. Interfaces., 13, 13434-13442 (2021).   DOI
84 H. I. Adil, R. Mohammad, Thalji, S. A. Yasin, I. A. Saeed, M. A. Assiri, K. F. Chong, and G. A. M. Ali, Metal-organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions, RSC Adv., 12, 1433-1450 (2022).   DOI
85 I. Jelic, M. Sljivic-Ivanovic, S. Dimovic, D. Antonijievic, M. Jovic, M. Mirkovic, and I. Smiciklas, The applicability of construction and demolition waste components for radionuclide sorption, J. Clean Production, 171, 322-332 (2018).   DOI
86 S. U. Nandanwar, K. Coldsnow, V. Utgikar, P. Sabharwall, and D. E. Aston, Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment - A review, Chem. Eng. J., 306, 369-381 (2016).   DOI
87 Y. Chen and J. Wang, Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des., 9, 445-451 (2021).
88 P. Moridi, F. Atabi, J. Nouri, and R. Yarahmadi, Selection of optimized air poollutant filtration technologies for petrochemical industries through multiple-attribute decision making, J. Environ. Manage., 197, 456-463 (2009).
89 W. Song, X. Wang, Q. Wang, D. Shao, and X. Wang, Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides, Phys. Chem. Chem. Phys., 17, 398-406 (2015).   DOI
90 M. A. Abu-Dalo, S. Nevostrueva, and M. Hernandez, Removal of radionuclides from acidic solution by activated carbon impregnated with methyl- and carboxy-benzotriazoles, Sci. Rep., 10, 1-13 (2020).   DOI
91 P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, and X. wang, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution, Environ. Pollut., 240, 493-505 (2018).   DOI
92 M. I. Aly, M. R. Hassan, M. M. Ghobashy, and B. A. Masry, Removal of barium (II), cobalt (II), and strontium (II) from aqueous solution using chemically modified poly (acrylonitrile-butadiene-styrene) pellets, Particulate Sci. Technol., 11, 1-15 (2021).   DOI
93 Q. T. N. Le, E. L. Vivas, and K. Cho, Oxalated blast-furnace slag for the removal of Cobalt(II) ions from aqueous solutions, J. Ind. Eng. Chem., 95, 57-65 (2021).   DOI
94 W. Mu, S. Du, X. Li, Q. Yu, R. Hu, H. Wei, Y. Yang, and S. Peng, Efficient and irreversible capture of strontium ions from aqueous solution using metal-organic frameworks with ion trapping groups, Dalton Trans., 48, 3284-3290 (2019).   DOI
95 A. Takahashi, M. Chiba, A. Tanahara, J. Aida, Y. Shimizu, T. Suzuki, S. Murakami, K. Koarai, T. Ono, T. Oka, J. Ikeyama, O. Kaneko, M. Unno, K. Hirose, T. Ohna, Y. Kino, T. Sekine, K. Osaka, K. Sasaki, and H. Shinoda, Radioactivity and radionuclides in deciduous teeth formed before the fukushima-daiichi nuclear power plant accident, Sci. Rep., 11, 1-11 (2021).   DOI
96 X. Zhong, Y. Liu, W. Liang, Y. Zhu, and B. Hu, Construction of core-shell MOFs@COF hybrids as a platform for the removal of UO22+ and Eu3+ Ions from Solution, ACS Appl. Mater. Interfaces, 13, 13883-13895 (2021).   DOI
97 E. A. Abdel-Galil, R. S. Hassan, and M. A. Eid, Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions, Appl. Radiat. Isot., 148, 91-101 (2019).   DOI
98 T. Gafvert, C. Ellmark, and E. Holm, Removal of radionuclides at a waterworks, J. Environ. Radioactivity, 63,105-115 (2002).   DOI
99 M. F. Attallah, A. I. Abd-Elhamid, I. M. Ahmed, and H. F. Aly, Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste, J. Mol. Liq., 261, 379-386 (2018).   DOI
100 X. H. Fang, F. Fang, C. H. Lu, and L. Zheng, Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Eng. Technol., 49, 556-561 (2017).
101 W. Hu, S. Lu, W. Song, T. Chen, T. Hayat, N. S. Alsaedi, C. Chen, and H. Liu, Competitive adsorption of U (VI) and Co (II) on montmorillonite: A batch and spectroscopic approach, Appl. Clay Sci., 157, 121-129 (2018).   DOI
102 V. A. Magalhaes, R. M. Aranha, G. P. Mendes, L. C. R. Soares, N. K. Yoshikawa, C. A. O. Nascimento, M. M. G. R. Vianna, and O. Chiavone-Filho, Homogeneous and Heterogeneous Advanced Oxidation Processes: Treatability Studies on Artificially Contaminated Soils with Creosote, Wat. Air Soil Poll., 233, 1-11 (2022).   DOI
103 F. Tavasol, T. Tabatabaie, B. Ramavandi, F, and Amiri, Photocatalyst production from wasted sediment and quality improvement with titanium dioxide to remove cephalexin in the presence of hydrogen peroxide and ultrasonic waves: A cost-effective technique, Chemosphere, 284, 131337 (2021).   DOI
104 J. W. Choi, Y. J. Park, and S. J. Choi, Synthesis of metal-organic framework ZnO x-MOF@MnO2 composites for selective removal of strontium ions from aqueous solutions, ACS Omega, 5, 8721-8729 (2020).   DOI
105 X. Wang, T. Shan, and S. Pang, Removal of Sr, Co, and Mn from seawater by Sargassum horneri in mono and multi-nuclide contamination scenarios, J. Appl. Phycol., 33, 2587-2596 (2021).   DOI
106 I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V. M. Gunko, and I. Mykytyn, Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr (II) cations, J. Mol. Liq., 282, 587-597 (2019).   DOI
107 B. Zhuikov, and S. Ermolaev, Adsorption from liquid metals: An approach for recovery of radionuclides from irradiated targets, Radiochim. Acta, 109, 99-107 (2021).   DOI
108 E. A. Abdel-Galil, R. S. Hassan, and M. A. Eid, Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions, Appl. Radiat. Isot., 166, 91-101 (2019).
109 L. Yin, X. Kong, X. Shao, and Y. Ji, Synthesis of DtBuCH18C6-coated magnetic metal-organic framework Fe3O4@UiO-66-NH2 for strontium adsorption, J Environ Chem. Eng., 7, 103073 (2019).   DOI
110 L. Ren, X. Zhao, B. Liu, and H. Huang, Synergistic effect of carboxyl and sulfate groups for effective removal of radioactive strontium ion in a Zr-metal-organic framework, Water Sci. Technol., 83, 2001-2011 (2021).   DOI
111 M. I. A. Maksoud, N. M. Sami, H. S. Hassan, and A. S. Awed, Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions, Sep. Purif. Technol., 277, 119478 (2021).   DOI
112 M. F. Attallah, H. S. Hassan, and M. A. Youssef, Synthesis and sorption potential study of Al2O3-ZrO2-CeO2 composite material for removal of some radionuclides from radioactive waste effluent, Appl. Radiat. Isot., 147, 40-47 (2019).   DOI
113 L. Chen, S. Lu, S. Wu, J. Zhou, and X. Wang, Removal of radiocobalt from aqueous solutions using titanate/graphene oxide composites, J. Mol. Liq., 209, 397-403 (2015).   DOI
114 A. F. Seliman, Y. F. Lasheen, M. A. E. Youssief, M. M. Abo-Aly, and F. A. Shehata, Removal of some radionuclides from contaminated solution using natural clay: bentonite, J. Radioanal. Nucl. Chem., 3, 969-979 (2014).
115 A. Ivanets, N. Kitikova, I. Shashkova, A. Radkevich, T. Stepanchuk, M. Maslova, and N. Mudruk, One-stage adsorption treatment of liquid radioactive wastes with complex radionuclide composition, Wat. Air Soil Poll., 231, 1-10 (2020).   DOI
116 V. G. Rumynin and A. M. Nikulenkov, Geological and physicochemical controls of the spatial distribution of partition coefficients for radionuclides (Sr-90, Cs-137, Co-60, Pu-239,240 and Am-241) at a site of nuclear reactors and radioactive waste disposal (St. Petersburg region, Russian Federation), J. Environ. Radioactivity, 162, 205-218 (2016).   DOI
117 A. Seliman, Affinity and removal of radionuclides mixture from low-level liquid waste by synthetic ferrierites, J. Radioanal. Nucl. Chem., 292, 729-738 (2012).   DOI
118 P. Sivaperumal, K. Kamala, and R. Rajaram, Biosorption of Long Half-life Radionuclide of Strontium Ion (Sr+) by Marine Actinobacterium Nocardiopsis sp. 13H, Geomicrobiol. J., 35, 300-310 (2018).   DOI
119 E. S. Zakaria, I. M. Ali, M. Khalil, A. El-Tantawy, and F. A. EI-Saied, Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide, J. Radioanal. Nucl., 329, 191-211(2021).   DOI
120 J. Huo, G. Yu, and J. Wang, Efficient removal of Co(II) and Sr(II) from aqueous solution using polyvinyl alcohol/graphene oxide/MnO2 composite as a novel adsorbent, J. Hazard. Mater., 411, 125117 (2021).   DOI
121 L. P Lingamdinne, J. R. Koduru, and R. R. Karri, A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification, J. Environ. Manage., 231, 622-634 (2019).   DOI
122 S. Z. N. Ahmad, W. N. W. Salleh, A. F. Ismail, N. Yusof, M. Z. M. Yosop, and F. Aziz, Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms, Chemosphere, 248, 126008 (2020).   DOI
123 L. Chen, D. Zhao, S. Chen, and X. Wang, and C. Chen, One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal, J. Colloid Interface Sci., 472, 99-107 (2016).   DOI
124 K. K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M. M. Awasthi, and A. Pandey, Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review, Environ. Res., 207, 112202 (2021).
125 S. M. Husnain, U. Asim, A. Yaqub, F. Shahzad, and N. Abbas, Recent trends of MnO2-derived adsorbents for water treatment: A review, New. J. Chem., 44, 6096-6120 (2020).   DOI
126 J. Theerthagiri, S. J. Lee, K. Karuppasamy, J. Park, Y. Yu, M. L. Aruna Kumari, S. Chandrasekaran, H. S. Kim, and M. Y. Choi, Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants, J. Hazard. Mater., 420, 126648 (2021).   DOI
127 P. Zhang, Y. Wang, and D. Zhang, Removal of Nd(III), Sr(II), and Rb(I) ions from aqueous solution by thiacalixarene-functionalized graphene oxide composite as an adsorbent, J. Chem. Eng. Data., 61, 3679-3691 (2016).   DOI
128 W. M. A. El Rouby, A. A. Farghali, M. A. Sadek, and W. F. Khalil, Fast removal of Sr(II) from water by graphene oxide and chitosan modified graphene oxide, J. Inorg. Organomet. Polym. Mater., 28, 2336-2349 (2018).   DOI
129 J. B. Huo, G. Yu, and J. Wang, Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel, Chemosphere, 278, 130492 (2021).   DOI
130 X. Wang, and J. Yu, Application of Fe3O4/graphene oxide composite for the separation of Cs(I) and Sr(II) from aqueous solution, J. Radioanal. Nucl. Chem., 303, 807-813 (2015).   DOI
131 A. Samokhvalov, Aluminum metal-organic frameworks for sorption in solution: A review, Coord. Chem. Rev., 374, 236-253 (2018).   DOI
132 L. Jiang, S. Xiao, and J. Chen, Removal behavior and mechanism of Co(II) on the surface of Fe-Mn binary oxide adsorbent. Colloids Surf. A Physicochem. Eng. Aspect, 479, 1-10 (2015).   DOI
133 L. Dong, C. Wu, Y. Han, S. Pan, Z. Wang, G. Zhang, L. Hou, and P. Gu, Research on the application potential of spent biological activated carbon from BAC process to remove radionuclides Sr2+ from water, J. Radioanal. Nucl. Chem., 327, 1179-1190 (2021).   DOI
134 H. Qi, H. Liu, and Y. Gao, Removal of Sr(II) from aqueous solutions using polyacrylamide modified graphene oxide composites, J. Mol. Liq., 208, 394-401 (2015).   DOI
135 G. Q. Wang, J. F. Huang, X. F. Huang, S. Q. Deng, S. R. Zheng, S. L. Cai, J. Fan, and W. G. Zhang, A hydrolytically stable cage-based metal-organic framework containing two types of building blocks for the adsorption of iodine and dyes, Inorg. Chem. Front., 8, 1083-1092 (2021).   DOI
136 B. E. Meteku, J. Huang, J. Zeng, F. Subhan, F. Feng, Y. Zhang, Z. Qui, S. Aslam, G. Li, and Z. Yan, Magnetic metal-organic framework composites for environmental monitoring and remediation, Coord. Chem. Rev., 413, 213261 (2020).   DOI
137 M. Majdoub, A. Amedlous, Z. Anfar, A. Jada, and N. EI Alem, Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water, J. Colloid Interface Sci., 589, 511-524 (2021).   DOI
138 A. Asahar, M. M. Bello, and A. A. A.Raman, Metal-Organic Frameworks for Heavy Metal Removal, Remediation Technol., 2, 321-356 (2018).
139 W. Peng, H. Li, Y. Liu, and S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites, J. Mol. Liq., 230, 496-504 (2017).   DOI
140 M. A. Soliman, G. M. Rashad, and M. R. Mahmoud, Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions, Environ. Sci. Pollut. Res., 26, 10398-10413 (2019).   DOI
141 Y. Wang, X. Hu, Y. Liu, Y. Li, T. Lan, C. Wang, Y. Liu, D. Yuan, X. Cao, H. He, L. Zhou, Z. Liu, and J. W. Chew, Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples, Sci. Total Environ., 765, 142686 (2021).   DOI
142 E. A. A. El-Shazly, G. A. Dakroury, and H. H. Someda, Kinetic and isotherm studies for the sorption of 134Cs and 60Co radionuclides onto supported titanium oxide, J. Radioanal. Nucl. Chem., 330, 127-139 (2021).   DOI
143 S. Ramanayaka, M. Vithanage, A. Sarmah, T. An, K. H. Kim, and Y. S. Ok, Performance of metal-organic frameworks for the adsorptive removal of potentially toxic elements in a water system: A critical review, RSC Adv., 9, 34359-34376 (2019).   DOI
144 Q. Gao, J. Xu, and X. H. Bu, Recent advances about metal-organic frameworks in the removal of pollutants from wastewater, Coord. Chem. Rev., 378, 17-31(2019).   DOI
145 J. Ma, C. Wang, W. Xi, Q. Zhao, S. Wang, M. Qui, J. Wang, and X. Wang, Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: a review, ACS ES&T Eng., 1, 685-705 (2021).   DOI
146 J. Real, F. Persin, and C. Camarasa-Claret, Mechanisms of desorption of Cs-134 and Sr-85 aerosols deposited on urban surfaces, J. Environ. Radioactivity, 62, 1-15 (2002).   DOI
147 I. Smiciklas, I. Coha, M. Jovic, M. Nodilo, M. Slijivic-lvnovic, S. Smiljanic, and Z. Grahek, Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids, Sci. Rep., 11, 1-14 (2021).   DOI
148 N. Iki, C. Kabuto, T. Fukushima, H. Kumagai, H. Takrya, S. Miyanari, T. Miyashi, and S. Miyano, Synthesis of p-tert-butylthiacalix[4]arene and its inclusion property, Tetrahedron, 56, 1437-1443 (2000).   DOI
149 G. Boix, J. Troyano, L. Garzon-Tovar, C. Camur, N. Bermejo, A. Yazdi, J. Piella, N. G. Bastus, V. F. Puntes, I. Imaz, and D. Maspoch, MOF-beads containing inorganic nanoparticles for the simultaneous removal of multiple heavy metals from water, ACS Appl. Mater. Interfaces, 12, 10554-10562 (2021).
150 L. Zhang, J. Wei, X. Zhao, F. Li, F. Jiang, M. Zhang, and X. Cheng, Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate, Chem. Eng. J., 302, 733-743 (2016).   DOI
151 B. Maranescu, L. Lupa, and A. Visa, Synthesis, characterization and rare earth elements adsorption properties of phosphonate metal organic frameworks, Appl. Surf. Sci., 481, 83-91 (2019).   DOI
152 P. A. Kobielska, A. J. Howarth, O. K. Fartha, Q. Liu, R. Das, and S. Nayak, Metal organic fram work based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications, Coord. Chem. Rev., 358, 92-107 (2018).   DOI
153 S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, and X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review, Environ. Pollut., 291, 118076 (2021).   DOI
154 J. H. Li, L. X. Yang, J. Q. Li, W. H. Yin, Y. Tao, H. Q. Wu, and F. Luo, Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution, J. Solid State Chem., 269, 16-23 (2019).   DOI
155 J. Li, X. Wang, G. Zhao, C, Chen, Z. Chai, A. Alsaedi, T. Hayat, and X. Wang, Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47, 2322-2356 (2018).   DOI
156 Z. Shahryari, M. Yeganeh, K. Gheisari, and B. Ramezanzadeh, A brief review of the graphene oxide-based polymer nanocomposite coatings: preparation, characterization, and properties, J. Coatings Technol. Res., 18, 945-969 (2021).   DOI
157 X. Liu, X. Wang, J. Li, and X. Wang, Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions, Sci. China Chem., 59, 869-877 (2016).   DOI
158 C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot, and T. Loiseau, Capture of iodine in highly stable metal-organic frameworks: A systematic study, Chem. Commun., 49, 10320-10322 (2013).   DOI
159 M. Liu, C. Chen, J. Hu, X. Wu, and X. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal, Phys. Chem. Chem. Phys., 115, 25234-25240 (2011).   DOI
160 A. Chakraborty, S. bhattacharyya, A. Hazra, A. C. Ghosh, and T. K. Maji, Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution, Chem. Commun., 52, 2831-2834 (2016).   DOI
161 Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun., 9, 1-9 (2018).   DOI
162 F. Z. Karizi, S. Beheshti, and A. Morsali, Modulating iodine adsorption in nanoporous metal-organic framework via cation exchange process, Inorg. Chim. Acta, 482, 113-117 (2018).   DOI
163 Y. P. Liu, Y. T. Lv, J. F. Guan, F. M. Khoso, X. Y. Jiang, J. Chen, W. J. Li, and J. G. Yu, Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions, J. Mol. Liq., 343, 117709 (2021).   DOI
164 M. ul Hassan, S. Lee, M. T. Mehran, F. Shahzad, S. M. Husnain, and H. J. Ryu, Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix, J. Nucl. Mater., 543, 152566 (2021).   DOI