Browse > Article
http://dx.doi.org/10.14478/ace.2015.1101

Preparation of Three-Dimensional Graphene/Metal Oxide Nanocomposites for Application of Supercapacitors  

Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.5, 2015 , pp. 521-525 More about this Journal
Abstract
Graphene-based electrode materials have been widely explored for supercapacitor applications due to their unique two-dimensional structure and properties. In particular, Three-dimensional (3D) graphene materials are of great importance for preparing electrode materials because they can provide large surface area, efficient and rapid electron and ion transfer, and mechanical stability. Recently, a number of 3D hybrid architecture of graphene/metal oxides have been developed to increase simultaneously energy and power densities of supercapacitors. This review presents the recent progress of 3D nanocomposites based on graphene and metal oxides. Preparation methods and structures of these 3D nanocomposites and their great potential in supercapacitor applications have been summarized.
Keywords
supercapacitor; metal oxide; graphene; nanocomposite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Y. Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014).   DOI
2 V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014).   DOI   ScienceOn
3 X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011).   DOI   ScienceOn
4 Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014).   DOI   ScienceOn
5 S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2014).
6 F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013).   DOI   ScienceOn
7 M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326-1330 (2012).   DOI   ScienceOn
8 C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, and F. Wei, Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V, J. Am. Chem. Soc., 136, 2256-2259 (2014).   DOI   ScienceOn
9 T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, and Y. Tong, 3D $MnO_2$-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors, Nanoscale, 5, 6790-6796 (2013).   DOI   ScienceOn
10 X. Wang, B. D. Myers, J. Yan, G. Shekhawat, V. Dravid, and P. S. Lee, Manganese oxide micro-supercapacitors with ultra-high areal capacitance, Nanoscale, 5, 4119-4122 (2013).   DOI   ScienceOn
11 X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, and Y. Ma, Recent advances in porous graphene materials for supercapacitor applications, RSC Adv., 4, 45862-45884 (2014).   DOI   ScienceOn
12 Y. Huang, J. Liang, and Y. Chen, An overview of the applications of graphen-based materials in supercapacitors, Small, 4, 1805-1834 (2012).
13 Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011).   DOI   ScienceOn
14 C. Li and G. Shi, Three-dimensional graphene architectures, Nanoscale, 4, 5549-5563 (2012).   DOI   ScienceOn
15 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8, 3498-3502 (2008).   DOI   ScienceOn
16 X. Cao, Z. Yin, and H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy Environ. Sci., 7, 1850-1865 (2014).   DOI
17 A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014).   DOI   ScienceOn
18 M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766-3798 (2013).   DOI   ScienceOn
19 Y. Xu and G. Shi, Assembly of chemically modified graphene: methods and applications, J. Mater. Chem., 21, 3311-3323 (2011).   DOI
20 H. Bai, C. Li, X. Wang, and G. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun., 46, 2376-2378 (2010).   DOI   ScienceOn
21 B. Hua, L. Chun, W. X. Lin, and S. G. Quan, On the gelation of graphene oxide, J. Phys. Chem., 115, 5545-5551 (2011).   DOI   ScienceOn
22 O. C. Compton, Z. An, K. W. Putz, B. J. Hong, B. G. Hauser, L. C. Brinson, and S. T. Nguyen, Additive-free hydrogelation of graphene oxide by ultrasonication, Carbon, 50, 3399-3406 (2012).   DOI   ScienceOn
23 Y. Xu, Q. Wu, Y. Sun, H. Bai, and G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels, ACS Nano, 4, 7359-7362 (2010).
24 H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-aseembly process, ACS Nano, 6, 2693-2703 (2012).   DOI   ScienceOn
25 H. Sun, Z. Xu, and C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels, Adv. Mater., 25, 2554-2560 (2013).   DOI   ScienceOn
26 S. Korkut, J. D. Roy-Mayhew, D. M. Dabbs, D. L. Milius, and I. A. Aksay, High surface area tapes produced with functionalized graphene, ACS Nano, 5, 5214-5222 (2011).   DOI   ScienceOn
27 X. Yang, J. Zhu, L. Qiu, and D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors, Adv. Mater., 23, 2833-2838 (2011).   DOI   ScienceOn
28 F. Liu and T. S. Seo, A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films, Adv. Funct. Mater., 20, 1930-1936 (2010).   DOI   ScienceOn
29 C. C. Ji, M. W. Xu, S. J. Bao, Z. J. Lu, C. J. Cai, H. Chai, R. Y. Wang, F. Yang, and H. Wei, Self-assembled three-dimensional interprenetrating porous graphene aerogels with $MnO_2$ coating and their application as high-performance supercapacitors, New J. Chem., 37, 4199-4205 (2013).   DOI   ScienceOn
30 M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., and T. F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132, 14067-14069 (2010).   DOI   ScienceOn
31 B. G. Choi, Y. S. Huh, W. H. Hong, D. Erickson, and H. S. Park, Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors, Nanoscale, 5, 3976-3981 (2013).   DOI   ScienceOn
32 B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012).   DOI   ScienceOn
33 B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, and Y. S. Huh, 3D heterostructured architectures of $Co_3O_4$ nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries, Nanoscale, 4, 5924-5930 (2012).   DOI   ScienceOn
34 X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, and D. Zhao, Functional nanoporous graphene foams with controlled pore sizes, Adv. Mater., 24, 4419-4423 (2012).   DOI   ScienceOn
35 G. H. Moon, Y. Shin, D. Choi, B. W. Arey, G. J. Exarhos, C. Wang, W. Choi, and J. Liu, Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures, Nanoscale, 5, 6291-6296 (2013).   DOI   ScienceOn
36 S. Chen, J. Zhu, and X. Wang, One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties, J. Phys. Chem., 114, 11829-11834 (2010).
37 L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, and E. P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating, J. Am. Chem. Soc., 133, 6122-6125 (2011).   DOI   ScienceOn
38 Y. Q. Zhao, D. D. Zhao, P. Y. Tang, Y. M. Wang, C. L. Xu, and H. L. Li, $MnO_2$/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy, Mater. Lett., 76, 127-130 (2012).   DOI   ScienceOn
39 S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, Graphene oxide-$MnO_2$ nanocomposites for supercapacitors, ACS Nano, 4, 2822-2830 (2010).   DOI   ScienceOn
40 Z. Ma, X. Hunag, S. Dou, J. Wu, and S. Wang, One-pot synthesis of $Fe_2O_3$ nanoparticles on nitrogen doped graphene as advanced supercapacitor electrode materials, J. Phys. Chem., 118, 17231-17239 (2014).
41 K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401 (2010).   DOI   ScienceOn
42 S. Wu, W. Chen, and L. Yan, Fabrication of a 3D $MnO_2$/graphene hydrogel for high-peformance asymmetric supercapacitors, J. Mater. Chem. A, 2, 2765-2772 (2014).   DOI   ScienceOn
43 H. Wang, H. Yi, X. Chen, and X. Wang, One-step strategy to three-dimensional graphene/$VO_2$ nanobelt composite hydrogels for high performance supercapacitors, J. Mater. Chem. A, 2, 1165-1173 (2014).   DOI   ScienceOn
44 G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, and Z. Bao, Solution-processed graphene/$MnO_2$ nanostructured textiles for high-performance electrochemical capacitors, Nano Lett., 11, 2905-2911 (2011).   DOI
45 L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, and C. Chen, Self-assembled 3D graphene-based aerogel with $Co_3O_4$ nanoparticles as high-performance asymmetric supercapacitor electrode, Chem. Sus. Chem., 8, 2917-2926 (2015).   DOI   ScienceOn
46 X. Zhu, P. Zhang, S. Xu, X. Yan, and Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications, ACS Appl. Mater. Interfaces, 6, 11665-11674 (2014).   DOI   ScienceOn