DOI QR코드

DOI QR Code

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi (Department of Biological and Environmental Engineering, Semyung University) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
  • Received : 2022.07.04
  • Accepted : 2022.07.19
  • Published : 2022.08.10

Abstract

Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Keywords

Acknowledgement

This work was supported by the Industrial Strategic Technology Development Program (20012763, development of petroleum residue-based porous adsorbent for industrial wastewater) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea), and by the Green Innovative Company Growth Support Program of the Korean Ministry of Environment.

References

  1. G. Zhao, J. Li, X. Ren, C. Chen, and X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol., 45, 10454-10462 (2011). https://doi.org/10.1021/es203439v
  2. M. I. A. A. Maksoud, N. M. Sami, H. S. Hassan, M. Bekhit, and A. H. Ashour, Novel adsorbent based on carbon-modified zirconia/spinel ferrite nanostructures: Evaluation for the removal of cobalt and europium radionuclides from aqueous solutions, J. Colloid Interface Sci., 607, 111-124 (2022). https://doi.org/10.1016/j.jcis.2021.08.166
  3. R. D. Ambashta and M. E. T. Sillanpaa, Membrane purification in radioactive waste management: a short review, J. Environ. Radioactivity, 105, 76-84 (2012). https://doi.org/10.1016/j.jenvrad.2011.12.002
  4. J. Sun, L. Liu, X. Zhao, S. Yang, S. Komarrneni, and D. Yang, Capture of radioactive cations from water using niobate nanomaterials with layered and tunnel structures, RSC Adv., 5, 75354-75359 (2015). https://doi.org/10.1039/C5RA10907H
  5. H. S. Hassan, D. M. Imam, S. H. Kenawy, G. T. El-Bassyouni, and E. M. A. Hamzawy, Sorption of radioactive cobalt onto nano calcium silicate/CuO composite modified by humic acid, J. Radiaoanal. Nucl. Chem., 321, 391-401(2019). https://doi.org/10.1007/s10967-019-06599-2
  6. J. Ma, C. Wang, W. Xi, Q. Zhao, S. Wang, M. Qui, J. Wang, and X. Wang, Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: a review, ACS ES&T Eng., 1, 685-705 (2021). https://doi.org/10.1021/acsestengg.0c00268
  7. X. Wang, L. Chen, L. Wang, Q. Fan, D. Pan, J. Li, F. Chi, S. Yu, C. Xiao, F. Luo, J. Wang, X. Wang, C. Chen, W. Wu, W. Shi, S. Wang, and X. Wang, Synthesis of novel nanomaterials and their application in efficient removal of radionuclides, Sci. China Chem., 8, 933-967 (2019).
  8. A. Y. Romanchuk, A. S. Slesarev, S. N. Kalmykov, D. V. Kosynkin, and J. M. Tour, Graphene oxide for effective radionuclide removal, Phys. Chem. Chem. Phys., 15, 2321-2327, (2013). https://doi.org/10.1039/c2cp44593j
  9. D. Yilmaz and A. Gurol, Efficient removal of iodine-131 from radioactive waste by nanomaterials, Instrum. Sci. Technol., 49, 45-54 (2021). https://doi.org/10.1080/10739149.2020.1775094
  10. P. Moridi, F. Atabi, J. Nouri, and R. Yarahmadi, Selection of optimized air poollutant filtration technologies for petrochemical industries through multiple-attribute decision making, J. Environ. Manage., 197, 456-463 (2009).
  11. F. Jia, Y. Yin, and J. Wang, Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation, Prog. Nucl. Energy, 103, 20-27 (2018). https://doi.org/10.1016/j.pnucene.2017.11.008
  12. J. Lehto, R. Koivula, H. Leinonen, E. Tusa, and R. Harjula, Removal of radionuclides from fukushima daiichi waste effluents, Sep. Purif. Rev., 48,122-142 (2019). https://doi.org/10.1080/15422119.2018.1549567
  13. P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, and X. wang, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution, Environ. Pollut., 240, 493-505 (2018). https://doi.org/10.1016/j.envpol.2018.04.136
  14. W. Song, X. Wang, Q. Wang, D. Shao, and X. Wang, Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides, Phys. Chem. Chem. Phys., 17, 398-406 (2015). https://doi.org/10.1039/c4cp04289a
  15. M. A. Abu-Dalo, S. Nevostrueva, and M. Hernandez, Removal of radionuclides from acidic solution by activated carbon impregnated with methyl- and carboxy-benzotriazoles, Sci. Rep., 10, 1-13 (2020). https://doi.org/10.1038/s41598-019-56847-4
  16. X. Zhong, Y. Liu, W. Liang, Y. Zhu, and B. Hu, Construction of core-shell MOFs@COF hybrids as a platform for the removal of UO22+ and Eu3+ Ions from Solution, ACS Appl. Mater. Interfaces, 13, 13883-13895 (2021). https://doi.org/10.1021/acsami.1c03151
  17. E. A. Abdel-Galil, R. S. Hassan, and M. A. Eid, Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions, Appl. Radiat. Isot., 148, 91-101 (2019). https://doi.org/10.1016/j.apradiso.2019.03.029
  18. T. Gafvert, C. Ellmark, and E. Holm, Removal of radionuclides at a waterworks, J. Environ. Radioactivity, 63,105-115 (2002). https://doi.org/10.1016/S0265-931X(02)00020-6
  19. X. Wang, T. Shan, and S. Pang, Removal of Sr, Co, and Mn from seawater by Sargassum horneri in mono and multi-nuclide contamination scenarios, J. Appl. Phycol., 33, 2587-2596 (2021). https://doi.org/10.1007/s10811-021-02477-1
  20. Y. Lu, J. Yuan, D. Du, B. Sun, and X. Yi, Monitoring long-term ecological impacts from release of Fukushima radiation water into ocean, Geogr. Sustain., 2, 95-98 (2021).
  21. E. A. A. El-Shazly, G. A. Dakroury, and H. H. Someda, Kinetic and isotherm studies for the sorption of 134Cs and 60Co radionuclides onto supported titanium oxide, J. Radioanal. Nucl. Chem., 330, 127-139 (2021). https://doi.org/10.1007/s10967-021-07956-w
  22. I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V. M. Gunko, and I. Mykytyn, Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr (II) cations, J. Mol. Liq., 282, 587-597 (2019). https://doi.org/10.1016/j.molliq.2019.03.026
  23. Y. Chen and J. Wang, Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des., 9, 445-451 (2021).
  24. A. Takahashi, M. Chiba, A. Tanahara, J. Aida, Y. Shimizu, T. Suzuki, S. Murakami, K. Koarai, T. Ono, T. Oka, J. Ikeyama, O. Kaneko, M. Unno, K. Hirose, T. Ohna, Y. Kino, T. Sekine, K. Osaka, K. Sasaki, and H. Shinoda, Radioactivity and radionuclides in deciduous teeth formed before the fukushima-daiichi nuclear power plant accident, Sci. Rep., 11, 1-11 (2021). https://doi.org/10.1038/s41598-020-79139-8
  25. A. F. Seliman, Y. F. Lasheen, M. A. E. Youssief, M. M. Abo-Aly, and F. A. Shehata, Removal of some radionuclides from contaminated solution using natural clay: bentonite, J. Radioanal. Nucl. Chem., 3, 969-979 (2014).
  26. M. F. Attallah, A. I. Abd-Elhamid, I. M. Ahmed, and H. F. Aly, Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste, J. Mol. Liq., 261, 379-386 (2018). https://doi.org/10.1016/j.molliq.2018.04.050
  27. I. Jelic, M. Sljivic-Ivanovic, S. Dimovic, D. Antonijievic, M. Jovic, M. Mirkovic, and I. Smiciklas, The applicability of construction and demolition waste components for radionuclide sorption, J. Clean Production, 171, 322-332 (2018). https://doi.org/10.1016/j.jclepro.2017.09.220
  28. M. I. Aly, M. R. Hassan, M. M. Ghobashy, and B. A. Masry, Removal of barium (II), cobalt (II), and strontium (II) from aqueous solution using chemically modified poly (acrylonitrile-butadiene-styrene) pellets, Particulate Sci. Technol., 11, 1-15 (2021). https://doi.org/10.1080/02726359308906615
  29. J. Real, F. Persin, and C. Camarasa-Claret, Mechanisms of desorption of Cs-134 and Sr-85 aerosols deposited on urban surfaces, J. Environ. Radioactivity, 62, 1-15 (2002). https://doi.org/10.1016/S0265-931X(01)00136-9
  30. X. H. Fang, F. Fang, C. H. Lu, and L. Zheng, Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Eng. Technol., 49, 556-561 (2017).
  31. A. Ivanets, N. Kitikova, I. Shashkova, A. Radkevich, T. Stepanchuk, M. Maslova, and N. Mudruk, One-stage adsorption treatment of liquid radioactive wastes with complex radionuclide composition, Wat. Air Soil Poll., 231, 1-10 (2020). https://doi.org/10.1007/s11270-019-4368-6
  32. Q. T. N. Le, E. L. Vivas, and K. Cho, Oxalated blast-furnace slag for the removal of Cobalt(II) ions from aqueous solutions, J. Ind. Eng. Chem., 95, 57-65 (2021). https://doi.org/10.1016/j.jiec.2020.12.003
  33. W. Hu, S. Lu, W. Song, T. Chen, T. Hayat, N. S. Alsaedi, C. Chen, and H. Liu, Competitive adsorption of U (VI) and Co (II) on montmorillonite: A batch and spectroscopic approach, Appl. Clay Sci., 157, 121-129 (2018). https://doi.org/10.1016/j.clay.2018.02.030
  34. V. G. Rumynin and A. M. Nikulenkov, Geological and physicochemical controls of the spatial distribution of partition coefficients for radionuclides (Sr-90, Cs-137, Co-60, Pu-239,240 and Am-241) at a site of nuclear reactors and radioactive waste disposal (St. Petersburg region, Russian Federation), J. Environ. Radioactivity, 162, 205-218 (2016). https://doi.org/10.1016/j.jenvrad.2016.05.030
  35. S. H. Frisbie, E. J. Mitchell, and B. Sarkar, Urgent need to reevaluate the latest world health organization guidelines for toxic inorganic substances in drinking water, Environ. Health, 14, 1-15 (2015). https://doi.org/10.1186/1476-069x-14-1
  36. A. Tayyebi, M. Outokesh, S. Moradi, and A. Doram, Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions, Appl. Surf. Sci., 353, 350-362 (2015). https://doi.org/10.1016/j.apsusc.2015.06.087
  37. M. A. Soliman, G. M. Rashad, and M. R. Mahmoud, Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions, Environ. Sci. Pollut. Res., 26, 10398-10413 (2019). https://doi.org/10.1007/s11356-019-04478-7
  38. E. A. Abdel-Galil, H. Moloukhia, M. Abdel-Khalik, and S. S. Mahrous, Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions, Appl. Radiat. Isot., 140, 363-373 (2018). https://doi.org/10.1016/j.apradiso.2018.07.022
  39. A. Ivanets, N. Kitikova, I. Shashkova, A. Radkevich, L. Shemet, and M. Sillanppa, Effective removal of 60Co from high-salinity water by Ca-Mg phosphate sorbents, J. Radioanal. Nucl. Chem., 318, 2341-2347 (2018). https://doi.org/10.1007/s10967-018-6291-5
  40. L. Dong, C. Wu, Y. Han, S. Pan, Z. Wang, G. Zhang, L. Hou, and P. Gu, Research on the application potential of spent biological activated carbon from BAC process to remove radionuclides Sr2+ from water, J. Radioanal. Nucl. Chem., 327, 1179-1190 (2021). https://doi.org/10.1007/s10967-021-07596-0
  41. I. Smiciklas, I. Coha, M. Jovic, M. Nodilo, M. Slijivic-lvnovic, S. Smiljanic, and Z. Grahek, Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids, Sci. Rep., 11, 1-14 (2021). https://doi.org/10.1038/s41598-020-79139-8
  42. B. Zhuikov, and S. Ermolaev, Adsorption from liquid metals: An approach for recovery of radionuclides from irradiated targets, Radiochim. Acta, 109, 99-107 (2021). https://doi.org/10.1515/ract-2020-0053
  43. M. Zhang, P. Gu, Z. Zhang, J. Liu, L. Dong, and G. Zhang, Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent, Coatings, 351, 668-677 (2018).
  44. E. A. Abdel-Galil, R. S. Hassan, and M. A. Eid, Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions, Appl. Radiat. Isot., 166, 91-101 (2019).
  45. A. Seliman, Affinity and removal of radionuclides mixture from low-level liquid waste by synthetic ferrierites, J. Radioanal. Nucl. Chem., 292, 729-738 (2012). https://doi.org/10.1007/s10967-011-1478-z
  46. X. Liu, J. Wang, Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization, Environ. Sci. Pollut. Res., 28, 3182-3195 (2021). https://doi.org/10.1007/s11356-020-10691-6
  47. P. Sivaperumal, K. Kamala, and R. Rajaram, Biosorption of Long Half-life Radionuclide of Strontium Ion (Sr+) by Marine Actinobacterium Nocardiopsis sp. 13H, Geomicrobiol. J., 35, 300-310 (2018). https://doi.org/10.1080/01490451.2017.1350891
  48. J. Li, J. Jin, Y. Zou, H. Sun, X. Zeng, X. Huang, M. Feng, and M.G. Kanatzidis, Efficient removal of Cs+ and Sr2+ Ions by Granulous (Me2NH2)4/3(Me3NH)2/3Sn3S7·1.25H2O/Polyacrylonitrile Composite, ACS Appl. Mater. Interfaces., 13, 13434-13442 (2021). https://doi.org/10.1021/acsami.1c01983
  49. W. Mu, Q. Yu, R. Hu, X. Li, H. Wei, and Y. Jain, Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium, Appl. Surf. Sci., 423, 1203-1211 (2017). https://doi.org/10.1016/j.apsusc.2017.06.206
  50. T. Wen, X. Wu, M. Liu, Z. Xing, X. Wang, and A. Xu, Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites, Dalton Trans., 43, 7464-7472 (2014). https://doi.org/10.1039/c3dt53591f
  51. S. Zhuang and J. Wang, Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite, Environ. Prog. Sustain. Energy, 38, 32-41 (2019).
  52. H. A. EI-saied, A. M. Shahr EI-Din, B. A. Masry, and A. M. Ibrahim, A promising superabsorbent nanocomposite based on grafting biopolymer/nanomagnetite for capture of 134Cs, 85Sr and 60Co radionuclides, J. Polymer Environ., 28, 1749-1765 (2020). https://doi.org/10.1007/s10924-020-01720-z
  53. N. Abdullah, N. Yusof, W. J. Lau, J. Jaafar, and A. F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76, 17-38 (2019). https://doi.org/10.1016/j.jiec.2019.03.029
  54. M. F. Attallah, A. A. Helal, M. M. Hamed, and K. F. Allan, Elaboration of composite based on the incorporation of marble particles into polymeric framework for the removal of Co (II) and Eu (III), Radiochim. Acta, 2, 121-131 (2022).
  55. H. Benaissa, N. Nasrallah, A. Abdi, M. Kebir, B. Guedioura, and M. Trari, Investigation on removing of 60Co2+ radionuclide from radioactive waste water by Fe (III)-modified Algerian bentonite, Sci. Total. Environ., 3, 1497-1511 (2021).
  56. B. Esser, and M. Hermann, Buckling up zigzag nanobelts, Nat. Chem., 13, 209-211(2021). https://doi.org/10.1038/s41557-021-00642-0
  57. F. Leon, A. Ramos, J. Vaswani, C. Mendieta, and S. Brito, Climate change mitigation strategy through membranes replacement and determination methodology of carbon footprint in reverse osmosis ro desalination plants for islands and isolated territories, Water, 13, 1-17 (2021). https://doi.org/10.3390/w13010001
  58. V. A. Magalhaes, R. M. Aranha, G. P. Mendes, L. C. R. Soares, N. K. Yoshikawa, C. A. O. Nascimento, M. M. G. R. Vianna, and O. Chiavone-Filho, Homogeneous and Heterogeneous Advanced Oxidation Processes: Treatability Studies on Artificially Contaminated Soils with Creosote, Wat. Air Soil Poll., 233, 1-11 (2022). https://doi.org/10.1007/s11270-021-05470-z
  59. Y. Rong, S. Li, J. Niu, Z. Wang, X. Hao, C. Song, T. Wang, and G. Guan, Carbon-based electroactive ion exchange materials: Ultrahigh removal efficiency and ion selectivity for rapid removal of Cs+ ions, Sep. Purif. Technol., 274, 119056 (2021). https://doi.org/10.1016/j.seppur.2021.119056
  60. F. Tavasol, T. Tabatabaie, B. Ramavandi, F, and Amiri, Photocatalyst production from wasted sediment and quality improvement with titanium dioxide to remove cephalexin in the presence of hydrogen peroxide and ultrasonic waves: A cost-effective technique, Chemosphere, 284, 131337 (2021). https://doi.org/10.1016/j.chemosphere.2021.131337
  61. J. Theerthagiri, S. J. Lee, K. Karuppasamy, J. Park, Y. Yu, M. L. Aruna Kumari, S. Chandrasekaran, H. S. Kim, and M. Y. Choi, Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants, J. Hazard. Mater., 420, 126648 (2021). https://doi.org/10.1016/j.jhazmat.2021.126648
  62. K. S. Hashim, A. Shaw, R. AlKhaddar, P. Kot, and A. Al-Shamma'a, Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment, J. Clean. Production, 280, 124427 (2021). https://doi.org/10.1016/j.jclepro.2020.124427
  63. M. ul Hassan, S. Lee, M. T. Mehran, F. Shahzad, S. M. Husnain, and H. J. Ryu, Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix, J. Nucl. Mater., 543, 152566 (2021). https://doi.org/10.1016/j.jnucmat.2020.152566
  64. P. Liu, P. Yang, J. Yang, and J. Gu, One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba2+, Chem. Commun., 57, 5822-5825 (2021). https://doi.org/10.1039/D1CC01740C
  65. W. Zeng, Z. Hu, J. Luo, X. Hou, and X. Jiang, Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS, Anal. Chim. Acta, 1191, 339361 (2022). https://doi.org/10.1016/j.aca.2021.339361
  66. A. Ivanets, N. Kitikova, I. Shashkova, A. Radkevich, T. Stepanchuk, M. Maslova, and N. Mudruk, One-Stage adsorption treatment of liquid radioactive wastes with complex dadionuclide composition, Wat. Air Soil Poll., 4, 231 (2020).
  67. S. Bao, Y. Wang, Z. Wei, W. Yang, and Y. Yu, Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance, J. Hazard. Mater., 424, 127370 (2022). https://doi.org/10.1016/j.jhazmat.2021.127370
  68. F. Majid, M. D. Ali, S. Ata, I. Bibi, A. Malik, A. Ali, N. Alwadai, H. Albalawi, M. Shoaib, S. A.Bukhar, and M. Iqbal, Fe3O4/graphene oxide/Fe4[Fe(CN)6]3 nanocomposite for high performance electromagnetic interference shielding, Ceram. Int., 47, 11587- 11595 (2021). https://doi.org/10.1016/j.ceramint.2020.12.291
  69. L. P. Lingamdinne, S. Lee, Y. Y. Chang, J. R. Koduru, and J. K. Yang, Facile synthesis of lanthanum hydroxide doped graphene oxide for scavenged of radioactive and heavy elements from water, Synth. Met., 273, 116691 (2021). https://doi.org/10.1016/j.synthmet.2020.116691
  70. S. Velusamy, A. Roy, S. Sundaram, and T. K. Mallick, A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment, Chem. Rec., 21, 1570-1610 (2021). https://doi.org/10.1002/tcr.202000153
  71. X. Yang, Y, Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y. S. Ok, Y. Jiang, and B. Gao, Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review, Chem. Eng. J., 366, 608-621 (2019). https://doi.org/10.1016/j.cej.2019.02.119
  72. Y. Wang, X. Hu, Y. Liu, Y. Li, T. Lan, C. Wang, Y. Liu, D. Yuan, X. Cao, H. He, L. Zhou, Z. Liu, and J. W. Chew, Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples, Sci. Total Environ., 765, 142686 (2021). https://doi.org/10.1016/j.scitotenv.2020.142686
  73. X. Zhong, W. Liang, Z. Lu, M. Qiu, and B. Hu, Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal, J. Mol. Liq., 323, 114603 (2021). https://doi.org/10.1016/j.molliq.2020.114603
  74. I. Ali, A. V. Babkin, I. V. Burakova, and A. E. Burakov, E. A. Neskorommaya, A. G. Tkachev, S. Panglisch, N. AlMasoud, and T. S. Alomar, Fast removal of samarium ions in water on highly efficient nanocomposite based graphene oxide modified with polyhydroquinone: Isotherms, kinetics, thermodynamics and desorption, J. Mol. Liq., 329, 115584 (2021). https://doi.org/10.1016/j.molliq.2021.115584
  75. L. Li, H. Wu, J. Chen, L. Xu, G. Sheng, P. Fang, K. Du, C. Shen, and X. Guo, Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions, J. Mol. Liq., 332, 1-9 (2021).
  76. M. Su, Z. Liu, Y. Wu, H. Peng, T. Ou, S. Huang, G. Song, L. Kong, N. Chen, and D. Chen, Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution, Environ. Pollut., 268, 115786 (2021). https://doi.org/10.1016/j.envpol.2020.115786
  77. P. Yang, S. Li, C. Liu, C. Shen, and X. Liu, Water-endurable intercalated graphene oxide adsorbent with highly efficient uranium capture from acidic wastewater, Sep. Purif. Technol., 263, 118364 (2021). https://doi.org/10.1016/j.seppur.2021.118364
  78. C. H. Nguyen, M. L. Tran, T. T. V. Tran, and R. S. Juang, Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites, J. Taiwan Inst. Chem. Eng., 119, 80-89 (2021). https://doi.org/10.1016/j.jtice.2021.02.001
  79. J. Y. Lim, N. M. Mubarak, E. C. Abdullah, S. Nizamuddin, M. Khalid, and Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review, J. Ind. Eng. Chem., 66, 29-44 (2018). https://doi.org/10.1016/j.jiec.2018.05.028
  80. L. Xiuling, Preparation of graphene oxide-molecular sieve composite adsorbent and its adsorption performance for heavy metals in water, earth, Environ. Sci., 784, 012022 (2021).
  81. N. K. Gupta, H. Viltres, Y. C. Lopez, G. Salunkhe, and A. Sengupta, Magnetic CoFe2O4/Graphene oxide nanocomposite for highly efficient separation of f-block elements, Surf. Interfaces, 23, 100916 (2021). https://doi.org/10.1016/j.surfin.2020.100916
  82. X. Liu, R. Ma, X. Wang, Y. Ma, Y. Yang, L. Zhuang, S. Zhang, R. Jehan, J. Chen, and X. Wang, Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review, Environ. Pollut., 252, 62-73 (2019). https://doi.org/10.1016/j.envpol.2019.05.050
  83. Z. Shahryari, M. Yeganeh, K. Gheisari, and B. Ramezanzadeh, A brief review of the graphene oxide-based polymer nanocomposite coatings: preparation, characterization, and properties, J. Coatings Technol. Res., 18, 945-969 (2021). https://doi.org/10.1007/s11998-021-00488-8
  84. L. P. Lingamdinne, J. R. Koduru, H. Roh, Y. L. Choi, Y. Y. Chang, and J. K. Yang, Adsorption removal of Co(II) from waste-water using graphene oxide, Hydrometallurgy 165, 90-96 (2016). https://doi.org/10.1016/j.hydromet.2015.10.021
  85. X, Wang, Y. Liu, H. Pang, S. Yu, Y. Ai, X. Ma, G. Song, T. Hayat, A. Alsaedi, and X. Wang, Effect of graphene oxide surface modification on the elimination of Co(II) from aqueous solutions, Chem. Eng. J., 344, 380-390 (2018). https://doi.org/10.1016/j.cej.2018.03.107
  86. M. Xing, S. Zhuang, and J. Wang, Adsorptive removal of strontium ions from aqueous solution by graphene oxide, Environ. Sci. Pollut. Res., 26, 29669-29678 (2019). https://doi.org/10.1007/s11356-019-06149-z
  87. Y. Zhao, C. Guo, H. Fang, and J. Jiang, Competitive adsorption of Sr(II) and U(VI) on graphene oxide investigated by batch and modeling techniques, J. Mol. Liq., 222, 263-267 (2016). https://doi.org/10.1016/j.molliq.2016.07.032
  88. X. Liu, X. Wang, J. Li, and X. Wang, Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions, Sci. China Chem., 59, 869-877 (2016). https://doi.org/10.1007/s11426-016-5594-z
  89. S. Wang, X. Li, Y. Liu, C. Zhang, X. Tan, G. Zeng, B. Song, and L. Jiang, Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review, J. Hazard. Mater., 342, 177-191 (2018). https://doi.org/10.1016/j.jhazmat.2017.06.071
  90. L. Chen, D. Zhao, S. Chen, and X. Wang, and C. Chen, One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal, J. Colloid Interface Sci., 472, 99-107 (2016). https://doi.org/10.1016/j.jcis.2016.03.044
  91. F. V. Alamdarlo, G. Solookinejad, F. Zahakifar, M. R. Jalal, and M. Jabbari, Study of kinetic, thermodynamic, and isotherm of Sr adsorption from aqueous solutions on graphene oxide (GO) and (aminomethyl)phosphonic acid-graphene oxide (AMPA-GO), J. Radioanal. Nucl. Chem., 329, 1033-1043 (2021). https://doi.org/10.1007/s10967-021-07845-2
  92. H. Qi, H. Liu, and Y. Gao, Removal of Sr(II) from aqueous solutions using polyacrylamide modified graphene oxide composites, J. Mol. Liq., 208, 394-401 (2015). https://doi.org/10.1016/j.molliq.2015.04.061
  93. N. Iki, C. Kabuto, T. Fukushima, H. Kumagai, H. Takrya, S. Miyanari, T. Miyashi, and S. Miyano, Synthesis of p-tert-butylthiacalix[4]arene and its inclusion property, Tetrahedron, 56, 1437-1443 (2000). https://doi.org/10.1016/S0040-4020(00)00030-2
  94. P. Zhang, Y. Wang, and D. Zhang, Removal of Nd(III), Sr(II), and Rb(I) ions from aqueous solution by thiacalixarene-functionalized graphene oxide composite as an adsorbent, J. Chem. Eng. Data., 61, 3679-3691 (2016). https://doi.org/10.1021/acs.jced.6b00622
  95. W. M. A. El Rouby, A. A. Farghali, M. A. Sadek, and W. F. Khalil, Fast removal of Sr(II) from water by graphene oxide and chitosan modified graphene oxide, J. Inorg. Organomet. Polym. Mater., 28, 2336-2349 (2018). https://doi.org/10.1007/s10904-018-0885-9
  96. J. B. Huo, G. Yu, and J. Wang, Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel, Chemosphere, 278, 130492 (2021). https://doi.org/10.1016/j.chemosphere.2021.130492
  97. M. Liu, C. Chen, J. Hu, X. Wu, and X. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal, Phys. Chem. Chem. Phys., 115, 25234-25240 (2011). https://doi.org/10.1021/jp208575m
  98. X. Wang, and J. Yu, Application of Fe3O4/graphene oxide composite for the separation of Cs(I) and Sr(II) from aqueous solution, J. Radioanal. Nucl. Chem., 303, 807-813 (2015). https://doi.org/10.1007/s10967-014-3431-4
  99. L. Chen, S. Lu, S. Wu, J. Zhou, and X. Wang, Removal of radiocobalt from aqueous solutions using titanate/graphene oxide composites, J. Mol. Liq., 209, 397-403 (2015). https://doi.org/10.1016/j.molliq.2015.06.012
  100. E. S. Zakaria, I. M. Ali, M. Khalil, A. El-Tantawy, and F. A. EI-Saied, Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide, J. Radioanal. Nucl., 329, 191-211(2021). https://doi.org/10.1007/s10967-021-07766-0
  101. J. Huo, G. Yu, and J. Wang, Efficient removal of Co(II) and Sr(II) from aqueous solution using polyvinyl alcohol/graphene oxide/MnO2 composite as a novel adsorbent, J. Hazard. Mater., 411, 125117 (2021). https://doi.org/10.1016/j.jhazmat.2021.125117
  102. L. P Lingamdinne, J. R. Koduru, and R. R. Karri, A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification, J. Environ. Manage., 231, 622-634 (2019). https://doi.org/10.1016/j.jenvman.2018.10.063
  103. Y. P. Liu, Y. T. Lv, J. F. Guan, F. M. Khoso, X. Y. Jiang, J. Chen, W. J. Li, and J. G. Yu, Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions, J. Mol. Liq., 343, 117709 (2021). https://doi.org/10.1016/j.molliq.2021.117709
  104. S. Z. N. Ahmad, W. N. W. Salleh, A. F. Ismail, N. Yusof, M. Z. M. Yosop, and F. Aziz, Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms, Chemosphere, 248, 126008 (2020). https://doi.org/10.1016/j.chemosphere.2020.126008
  105. W. Peng, H. Li, Y. Liu, and S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites, J. Mol. Liq., 230, 496-504 (2017). https://doi.org/10.1016/j.molliq.2017.01.064
  106. M. Majdoub, A. Amedlous, Z. Anfar, A. Jada, and N. EI Alem, Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water, J. Colloid Interface Sci., 589, 511-524 (2021). https://doi.org/10.1016/j.jcis.2021.01.029
  107. A. Asahar, M. M. Bello, and A. A. A.Raman, Metal-Organic Frameworks for Heavy Metal Removal, Remediation Technol., 2, 321-356 (2018).
  108. Y. He, Z. Wang, H. Wang, Z. Wang, G. Zeng, P. Xu, D. Huang, M, Chen, B. Song, H. Qin, and Y. Zhao, Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications, Coord. Chem. Rev., 429, 213618 (2021). https://doi.org/10.1016/j.ccr.2020.213618
  109. A. Samokhvalov, Aluminum metal-organic frameworks for sorption in solution: A review, Coord. Chem. Rev., 374, 236-253 (2018). https://doi.org/10.1016/j.ccr.2018.06.011
  110. H. I. Adil, R. Mohammad, Thalji, S. A. Yasin, I. A. Saeed, M. A. Assiri, K. F. Chong, and G. A. M. Ali, Metal-organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions, RSC Adv., 12, 1433-1450 (2022). https://doi.org/10.1039/D1RA07034G
  111. S. Ramanayaka, M. Vithanage, A. Sarmah, T. An, K. H. Kim, and Y. S. Ok, Performance of metal-organic frameworks for the adsorptive removal of potentially toxic elements in a water system: A critical review, RSC Adv., 9, 34359-34376 (2019). https://doi.org/10.1039/c9ra06879a
  112. Q. Gao, J. Xu, and X. H. Bu, Recent advances about metal-organic frameworks in the removal of pollutants from wastewater, Coord. Chem. Rev., 378, 17-31(2019). https://doi.org/10.1016/j.ccr.2018.03.015
  113. A. Chakraborty, S. bhattacharyya, A. Hazra, A. C. Ghosh, and T. K. Maji, Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution, Chem. Commun., 52, 2831-2834 (2016). https://doi.org/10.1039/c5cc09814a
  114. C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot, and T. Loiseau, Capture of iodine in highly stable metal-organic frameworks: A systematic study, Chem. Commun., 49, 10320-10322 (2013). https://doi.org/10.1039/c3cc43728k
  115. B. Assfour, T. Assaad, and A. Odeh, In silico screening of metal organic framework for iodine capture and storage, Chem. Phys. Lett., 610, 45-49 (2014). https://doi.org/10.1016/j.cplett.2014.07.008
  116. S. U. Nandanwar, K. Coldsnow, V. Utgikar, P. Sabharwall, and D. E. Aston, Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment - A review, Chem. Eng. J., 306, 369-381 (2016). https://doi.org/10.1016/j.cej.2016.07.073
  117. Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, and C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun., 9, 1-9 (2018). https://doi.org/10.1038/s41467-017-02088-w
  118. F. Z. Karizi, S. Beheshti, and A. Morsali, Modulating iodine adsorption in nanoporous metal-organic framework via cation exchange process, Inorg. Chim. Acta, 482, 113-117 (2018). https://doi.org/10.1016/j.ica.2018.05.040
  119. G. Boix, J. Troyano, L. Garzon-Tovar, C. Camur, N. Bermejo, A. Yazdi, J. Piella, N. G. Bastus, V. F. Puntes, I. Imaz, and D. Maspoch, MOF-beads containing inorganic nanoparticles for the simultaneous removal of multiple heavy metals from water, ACS Appl. Mater. Interfaces, 12, 10554-10562 (2021).
  120. B. Maranescu, L. Lupa, and A. Visa, Synthesis, characterization and rare earth elements adsorption properties of phosphonate metal organic frameworks, Appl. Surf. Sci., 481, 83-91 (2019). https://doi.org/10.1016/j.apsusc.2019.03.067
  121. P. A. Kobielska, A. J. Howarth, O. K. Fartha, Q. Liu, R. Das, and S. Nayak, Metal organic fram work based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications, Coord. Chem. Rev., 358, 92-107 (2018). https://doi.org/10.1016/j.ccr.2017.12.010
  122. S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, and X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review, Environ. Pollut., 291, 118076 (2021). https://doi.org/10.1016/j.envpol.2021.118076
  123. J. H. Li, L. X. Yang, J. Q. Li, W. H. Yin, Y. Tao, H. Q. Wu, and F. Luo, Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution, J. Solid State Chem., 269, 16-23 (2019). https://doi.org/10.1016/j.jssc.2018.09.013
  124. G. Q. Wang, J. F. Huang, X. F. Huang, S. Q. Deng, S. R. Zheng, S. L. Cai, J. Fan, and W. G. Zhang, A hydrolytically stable cage-based metal-organic framework containing two types of building blocks for the adsorption of iodine and dyes, Inorg. Chem. Front., 8, 1083-1092 (2021). https://doi.org/10.1039/D0QI01257B
  125. J. Wang, and S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol., 52, 328-336 (2020). https://doi.org/10.1016/j.net.2019.08.001
  126. J. Li, X. Wang, G. Zhao, C, Chen, Z. Chai, A. Alsaedi, T. Hayat, and X. Wang, Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47, 2322-2356 (2018). https://doi.org/10.1039/C7CS00543A
  127. B. E. Meteku, J. Huang, J. Zeng, F. Subhan, F. Feng, Y. Zhang, Z. Qui, S. Aslam, G. Li, and Z. Yan, Magnetic metal-organic framework composites for environmental monitoring and remediation, Coord. Chem. Rev., 413, 213261 (2020). https://doi.org/10.1016/j.ccr.2020.213261
  128. Y. Yu, L. Zhou, J. Tang, P. Wu, L. Feng, B. Ge, H. Chen, J. Hu, S. Song, and T. Zeng, Effective removal of Co(II) and Sr(II) from radiocative wastes using covalent triazine frameworks: Kinetics and isotherm studies, Sep. Purif. Technol., 277, 119633 (2021). https://doi.org/10.1016/j.seppur.2021.119633
  129. G. Yuan, Y. Tian, J. Liu, H. Tu, J. Liao, J. Yang, Y. Yang, D. Wang, and N. Liu, Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution, Chem. Eng. J., 326, 691-699 (2017). https://doi.org/10.1016/j.cej.2017.06.024
  130. G. Yuan, H. Tu, J .Liu, C. Zhao, Y. Yang, J. Yang, and N. Liu, A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions, Chem. Eng. J., 333, 280-288 (2018). https://doi.org/10.1016/j.cej.2017.09.123
  131. G. Yuan, H. Tu, M. Li, J. Liu, C. Zhao, J. Liao, Y. Yang, J. Yang, and N. Liu, Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution, Appl. Surf. Sci., 466, 903-910 (2019). https://doi.org/10.1016/j.apsusc.2018.10.129
  132. M. Li, G. Yuan, Y. Zeng, H. Peng, Y. Yang, J. Liao, J. Yang, and N. Liu, Efficient removal of Co(II) from aqueous solution by flexible metal-organic framework membranes, J. Mol. Liq., 324, 114718 (2021). https://doi.org/10.1016/j.molliq.2020.114718
  133. P. Asgari, S. H. Mousavi, H. Aghayan, H. Ghasemi, and T. Yousefi, Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions, Microchem. J., 150, 104188 (2019). https://doi.org/10.1016/j.microc.2019.104188
  134. W. Mu, S. Du, X. Li, Q. Yu, R. Hu, H. Wei, Y. Yang, and S. Peng, Efficient and irreversible capture of strontium ions from aqueous solution using metal-organic frameworks with ion trapping groups, Dalton Trans., 48, 3284-3290 (2019). https://doi.org/10.1039/c9dt00434c
  135. L. Yin, X. Kong, X. Shao, and Y. Ji, Synthesis of DtBuCH18C6-coated magnetic metal-organic framework Fe3O4@UiO-66-NH2 for strontium adsorption, J Environ Chem. Eng., 7, 103073 (2019). https://doi.org/10.1016/j.jece.2019.103073
  136. C. Guo, M. Yuan, L. He, L. Cheng, X. Wang, N. Shen, F. Ma, G. Huang, and S. Wang, Efficient capture of Sr2+ from acidic aqueous solution by an 18-crown-6-ether-based metal organic framework, Crystal Eng. Commun., 23, 3349-3355 (2021). https://doi.org/10.1039/D1CE00229E
  137. L. Ren, X. Zhao, B. Liu, and H. Huang, Synergistic effect of carboxyl and sulfate groups for effective removal of radioactive strontium ion in a Zr-metal-organic framework, Water Sci. Technol., 83, 2001-2011 (2021). https://doi.org/10.2166/wst.2021.103
  138. J. W. Choi, Y. J. Park, and S. J. Choi, Synthesis of metal-organic framework ZnO x-MOF@MnO2 composites for selective removal of strontium ions from aqueous solutions, ACS Omega, 5, 8721-8729 (2020). https://doi.org/10.1021/acsomega.0c00228
  139. A. I. Ivanets, V. G. Prozorovich, T. F. Kouznetsova, A. V. Radkevich, and A. M. Zarubo, Mesoporous manganese oxides prepared by sol-gel method: Synthesis, characterization and sorption properties towards strontium ions, Environ. Nanotechnol., Monit. Manag., 6, 261-269 (2016).
  140. M. I. A. Maksoud, N. M. Sami, H. S. Hassan, and A. S. Awed, Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions, Sep. Purif. Technol., 277, 119478 (2021). https://doi.org/10.1016/j.seppur.2021.119478
  141. B. Isik, A. E. Kurtoglu, G. Gurdag, and G. Keceli, Radioactive cesium ion removal from wastewater using polymer metal oxide composites, J. Hazard. Mater., 403, 123652 (2021). https://doi.org/10.1016/j.jhazmat.2020.123652
  142. A. E. Ersundu, M. Buyukyildiz, M. C. Ersundu, E. Sankar, and M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy, 104, 280-287 (2018). https://doi.org/10.1016/j.pnucene.2017.10.008
  143. M. F. Attallah, H. S. Hassan, and M. A. Youssef, Synthesis and sorption potential study of Al2O3-ZrO2-CeO2 composite material for removal of some radionuclides from radioactive waste effluent, Appl. Radiat. Isot., 147, 40-47 (2019). https://doi.org/10.1016/j.apradiso.2019.01.015
  144. K. K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M. M. Awasthi, and A. Pandey, Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review, Environ. Res., 207, 112202 (2021).
  145. J. Ma, C. Wang, W. Xi, Q. Zhao, S. Wang, M. Qui, J. Wang, and X. Wang, Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: A Review, ACS ES&T Eng., 1, 685-705 (2021). https://doi.org/10.1021/acsestengg.0c00268
  146. S. M. Husnain, U. Asim, A. Yaqub, F. Shahzad, and N. Abbas, Recent trends of MnO2-derived adsorbents for water treatment: A review, New. J. Chem., 44, 6096-6120 (2020). https://doi.org/10.1039/c9nj06392g
  147. D. Alby, C. Charnay, M. Heran, B. Prelot, and J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review, J. Hazard. Mater., 344. 511-530 (2018). https://doi.org/10.1016/j.jhazmat.2017.10.047
  148. J. S. Hu, L. Zhong, W. Song, and L. Wan, Synthesis and hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 20, 2977-2982 (2008). https://doi.org/10.1002/adma.200800623
  149. H. S. Hassan, W. E Madcour, and E. K. Elmaghraby, Removal of radioactive cesium and europium from aqueous solutions using activated Al2O3 prepared by solution combustion, Mater. Chem. Phys., 234, 55-66 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.081
  150. S. Liu, S. Kang, H. Wang, G. Wang, H. Zhao, and W. Cai, Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances, Chem. Eng. J., 289, 219-230 (2016). https://doi.org/10.1016/j.cej.2015.12.101
  151. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, and Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211, 317-331 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.016
  152. J. Liao, P. Liu, Y. Xie, and Y. Zhang, Metal oxide aerogels: Preparation and application for the uranium removal from aqueous solution, Sci. Total Environ., 768, 144212 (2021). https://doi.org/10.1016/j.scitotenv.2020.144212
  153. H. W. Kang, J. H. Choi, K. R. Lee, and H. S. Park, Addition of transition metal oxides on silver tellurite glass for radioactive iodine immobilization, J. Nucl. Mater., 543, 152635 (2021). https://doi.org/10.1016/j.jnucmat.2020.152635
  154. U. H. Kaynar, S. C. Kaynar, E. E. Karali, M. Ayvacikli, and N. Can, Adsorption of thorium (IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: Empirical modeling and process optimization by response surface methodology (RSM), Appl. Radiat. Isot., 178, 109955 (2021). https://doi.org/10.1016/j.apradiso.2021.109955
  155. N. M. Izzudin, A. A. Jalil, F. F. A. Aziz, M. S. Azami, M. W. Ali, N. S. Hassan, A. F. A. Rahman, A. A. Fauzi, and D. V. N, Vo, Simultaneous remediation of hexavalent chromium and organic pollutants in wastewater using period 4 transition metal oxide-based photocatalysts: a review, Environ. Chem. Lett., 19, 4489-4517 (2021). https://doi.org/10.1007/s10311-021-01272-1
  156. T. Wen, Z. Zhao, C. Shen, J. Li, X. Tan, A. Zeb, X. Wang, and A. W. Xu, Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils, Sci. Rep., 6, 1-10 (2016). https://doi.org/10.1038/s41598-016-0001-8
  157. M. E. Mahmoud, E. A. Allam, E. A. Saad, A. M. EI-Khatib, and M. A. Soliman, Intercalation of nanopolyaniline with nanobentonite and manganese oxide nanoparticles as a novel nanocomposite to remediate cobalt/zinc and their radioactive nuclides 60Co/66Zn, J. Polymer Environ., 27, 421-433 (2019). https://doi.org/10.1007/s10924-018-1356-7
  158. J. A. Abdullah, A. G. Al Lafi, W. A. Masri, Y. Amin, and T. Alnama, Adsorption of Cesium, Cobalt, and Lead onto a Synthetic Nano Manganese Oxide: Behavior and Mechanism, Water Air Soil. Pollut., 227, 1-14 (2016). https://doi.org/10.1007/s11270-015-2689-7
  159. M. R. Pourjavid, A. A. Sehat, M. Arabieh, S. R. Yousefi, M. H. Hosseini, and M. Rezaee, Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide, Mater. Sci. Eng. 35, 370-378 (2014). https://doi.org/10.1016/j.msec.2013.11.029
  160. L. Jiang, S. Xiao, and J. Chen, Removal behavior and mechanism of Co(II) on the surface of Fe-Mn binary oxide adsorbent. Colloids Surf. A Physicochem. Eng. Aspect, 479, 1-10 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.055
  161. L. Zhang, J. Wei, X. Zhao, F. Li, F. Jiang, M. Zhang, and X. Cheng, Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate, Chem. Eng. J., 302, 733-743 (2016). https://doi.org/10.1016/j.cej.2016.05.040
  162. L. Zhang, J. Wei, X. Zhao, F. Li, F. Jianng, M. Zhang, and X. Cheng, Competitive adsorption of strontium and cobalt onto tin antimonate, Chem. Eng. J., 285, 679-689 (2016). https://doi.org/10.1016/j.cej.2015.10.013
  163. A. Rengaraj, Y. Haldorai, P. Puthiaraj, S. K. Hwang, T. Ryu, J. Shin, Y. Han, W. Ahn, and Y. S. Huh, Covalent triazine polymer-Fe3O4 nanocomposite for strontium ion removal from seawater, Ind. Eng. Chem. Res., 56, 4984-4992 (2017). https://doi.org/10.1021/acs.iecr.7b00052
  164. B. Kiran, A. Kaushik, and C. P. Kaushik, Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium., Chem. Eng. J., 126, 147-153 (2007). https://doi.org/10.1016/j.cej.2006.09.002