• 제목/요약/키워드: metal oxide sensor

검색결과 236건 처리시간 0.019초

Use of High-Temperature Gas-Tight Electrochemical

  • Park, Jong-Hee;Beihai Ma;Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.103-113
    • /
    • 1998
  • By using a gas-tight electrochemical cell, we can perform high-temperature coulometric titration and measure electronic transport properties to determine the elecronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilitized zirconia(YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressure ($pO_2=10^{-35}$ to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria $(Ca-CeO_2 \;and\; CeO_2)$, copper oxides and copper-oxide-based ceramic superconductors, transition metal oxides, $SrFeCo_{0.5}O_x,\; and \;BaTiO_2$.

  • PDF

육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가 (Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application)

  • 박진수
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

가스센서 어레이를 이용한 악취 패턴분석에 대한 연구 (A Study on Malodor Pattern Analysis Using Gas Sensor Array)

  • 최장식;전진영;변형기;임해진
    • 센서학회지
    • /
    • 제22권4호
    • /
    • pp.286-291
    • /
    • 2013
  • This paper presents to analyze patterns from single and complex malodors using gas sensor array based on metal oxide semiconductors. The aim of research is to identify and discriminate single malodors such as $NH_3$, $CH_3SH$ and $H_2S$ and their mixtures according to concentration levels. Measurement system for analyzing patterns from malodors is constructed by an array of metal oxide semiconductor sensors which are available commercially together with associate electronics. The patterns from sensory system are analyzed by Principal Component Analysis (PCA) which is simple statistical pattern recognition technique. Throughout the experimental trails, we confirmed the experimental procedure for measurement system such as sensors calibration time and gas flow rate, and discriminated malodors using pattern analysis technique.

A Wide Dynamic Range CMOS Image Sensor Based on a Pseudo 3-Transistor Active Pixel Sensor Using Feedback Structure

  • Bae, Myunghan;Jo, Sung-Hyun;Lee, Minho;Kim, Ju-Yeong;Choi, Jinhyeon;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.413-419
    • /
    • 2012
  • A dynamic range extension technique is proposed based on a 3-transistor active pixel sensor (APS) with gate/body-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector using a feedback structure. The new APS consists of a pseudo 3-transistor APS and an additional gate/body-tied PMOSFET-type photodetector, and to extend the dynamic range, an NMOSFET switch is proposed. An additional detector and an NMOSFET switch are integrated into the APS to provide negative feedback. The proposed APS and pseudo 3-transistor APS were designed and fabricated using a $0.35-{\mu}m$ 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) process. Afterwards, their optical responses were measured and characterized. Although the proposed pixel size increased in comparison with the pseudo 3-transistor APS, the proposed pixel had a significantly extended dynamic range of 98 dB compared to a pseudo 3-transistor APS, which had a dynamic range of 28 dB. We present a proposed pixel that can be switched between two operating modes depending on the transfer gate voltage. The proposed pixel can be switched between two operating modes depending on the transfer gate voltage: normal mode and WDR mode. We also present an imaging system using the proposed APS.

육류 신선도 판별을 위한 휴대용 전자코 시스템 설계 및 성능 평가 (Design and performance evaluation of portable electronic nose systems for freshness evaluation of meats)

  • 김재곤;조병관
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.525-532
    • /
    • 2011
  • The aim of this study was to develop a portable electronic nose system for freshness measurement of meats, which could be an alterative of subjective measurements of human nose and time-consuming measurements of conventional gas chromatograph methods. The portable electronic system was o optimized by comparing the measurement sensitivity and hardware efficiency, such as power consumption and dimension reduction throughout two stages of the prototypes. The electronic nose systems were constructed using an array of four different metal oxide semiconductor sensors. Two different configurations of sensor array with dimension were designed and compared the performance respectively. The final prototype of the system showed much improved performance on saving power consumption and dimension reduction without decrease of measurement sensitivity of pork freshness. The results show the potential of constructing a portable electronic system for the measurement of meat quality with high sensitivity and energy efficiency.

α-Fe2O3 nanostructure-based gas sensors

  • Lee, Seonyong;Jang, Ho Won
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.210-217
    • /
    • 2021
  • Gas sensors based on semiconducting metal oxides have attracted considerable attention for various applications owing to their facile, cheap, and small-scale manufacturing processes. Hematite (α-Fe2O3) is widely considered as a promising candidate for a gas-sensing material owing to not only its abundance in the earth's crust and low price but also its chemical stability and suitable bandgap energy. However, only a few studies have been performed in this direction because of the low gas response and sluggish response of hematite-based gas sensors. Nanostructures present a representative solution to both overcome these disadvantages and exploit the desirable features to produce high-performance gas sensors. However, several challenges remain for adopting gas sensors based on metal oxide nanostructures, such as improving cost efficiency and facilitating mass production. This review summarizes the recent studies on gas sensors based on hematite nanostructures. It also provides useful insights into various strategies for enhancing the gas-sensing properties of gas sensors based on hematite nanostructures.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작 (Fabrication of low power NO micro gas senor by using CMOS compatible process)

  • 신한재;송갑득;이홍진;홍영호;이덕동
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.