DOI QR코드

DOI QR Code

α-Fe2O3 nanostructure-based gas sensors

  • Lee, Seonyong (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University)
  • Received : 2021.07.07
  • Accepted : 2021.07.23
  • Published : 2021.07.31

Abstract

Gas sensors based on semiconducting metal oxides have attracted considerable attention for various applications owing to their facile, cheap, and small-scale manufacturing processes. Hematite (α-Fe2O3) is widely considered as a promising candidate for a gas-sensing material owing to not only its abundance in the earth's crust and low price but also its chemical stability and suitable bandgap energy. However, only a few studies have been performed in this direction because of the low gas response and sluggish response of hematite-based gas sensors. Nanostructures present a representative solution to both overcome these disadvantages and exploit the desirable features to produce high-performance gas sensors. However, several challenges remain for adopting gas sensors based on metal oxide nanostructures, such as improving cost efficiency and facilitating mass production. This review summarizes the recent studies on gas sensors based on hematite nanostructures. It also provides useful insights into various strategies for enhancing the gas-sensing properties of gas sensors based on hematite nanostructures.

Keywords

Acknowledgement

This research was supported by the Strategic Core Material Development Program through the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry and Energy (MOTIE) (No.10080736). The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work.

References

  1. N. Yamazoe and K. Shimanoe, "Proposal of contact potential promoted oxide semiconductor gas sensor", Sens. Actuator B-Chem., Vol. 187, pp. 162-167, 2013. https://doi.org/10.1016/j.snb.2012.10.048
  2. I. S. Hwang, Y. S. Kim, S. J. Kim, B. K. Ju, and J. H. Lee, "A facile fabrication of semiconductor nanowires gas sensor using PDMS patterning and solution deposition", Sens. Actuator B-Chem., Vol. 136, No. 1, pp. 224-229, 2009. https://doi.org/10.1016/j.snb.2008.10.042
  3. http://www.usgs.gov/ (retrieved on Jul. 23, 2021).
  4. L. Liao, Z. Zheng, B. Yan, J. X. Zhang, H. Gong, J. C. Li, C. Liu, Z. X. Shen, and T. Yu, "Morphology controllable synthesis of α-Fe2O3 1D nanostructures: Growth mechanism and nanodevice based on single nanowire", J. Phys. Chem. C, Vol. 112, No. 29, pp. 10784-10788, 2008. https://doi.org/10.1021/jp802968a
  5. Z. Wu, K. Yu, S. Zhang, and Y. Xie, "Hematite hollow spheres with a mesoporous shell: Controlled synthesis and applications in gas sensor and lithium ion batteries", J. Phys. Chem. C, Vol. 112, No. 30, pp. 11307-11313, 2008. https://doi.org/10.1021/jp803582d
  6. X. Pan, X. Liu, A. Bermak, and Z. Fan, "Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors", ACS Nano, Vol. 7, No. 10, pp. 9318-9324, 2013. https://doi.org/10.1021/nn4040074
  7. S. Shao, X. Qiu, D. He, R. Koehn, N. Guan, X. Lu, N. Bao, and C. A. Grimes, "Low temperature crystallization of transparent, highly ordered nanoporous SNO2 thin films: Application to room-temperature hydrogen sensing", Nanoscale, Vol. 3, No. 10, pp. 4283-4289, 2011. https://doi.org/10.1039/c1nr10678c
  8. M. Hjiri, M. S. Aida, and G. Neri, "NO2 selective sensor based on α- Fe2O3 nanoparticles synthesized via hydrothermal technique", Sensors (Switzerland), Vol. 19, No. 1, p. 167, 2019. https://doi.org/10.3390/s19010167
  9. D. H. Kim, Y. S. Shim, J. M. Jeon, H. Y. Jeong, S. S. Park, Y. W. Kim, J. S. Kim, J. H. Lee, and H. W. Jang, "Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor", ACS Appl. Mater. Interfaces, Vol. 6, No. 17, pp. 14779-14784, 2014. https://doi.org/10.1021/am504156w
  10. Y. Ma, J. Yang, Y. Yuan, H. Zhao, Q. Shi, F. Zhang, C. Pei, B. Liu, and H. Yang, "Enhanced Gas Sensitivity and Sensing Mechanism of Network Structures Assembled from α-Fe2O3 Nanosheets with Exposed {104} Facets," Langmuir, Vol. 33, No. 35, pp. 8671-8678, 2017. https://doi.org/10.1021/acs.langmuir.7b00455
  11. J. M. Suh, Y. S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J. M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J. H. Lee, C. Y. Kang, and H. W. Jang., "Synergetically Selective Toluene Sensing in Hematite-Decorated Nickel Oxide Nanocorals", Adv. Mater. Technol., Vol. 2, No. 3, p. 1600259, 2017. https://doi.org/10.1002/admt.201600259
  12. C. Jin, C. Ge, G. Xu, G. Peterson, Z. Jian, Y. Wei, and K. Zhu, "Influence of nanoparticle size on ethanol gas sensing performance of mesoporous α-Fe2O3 hollow spheres", Mater Sci Eng B, Vol. 224, pp. 158-162, 2017. https://doi.org/10.1016/j.mseb.2017.07.015
  13. C. M. Hung, N. D. Hoa, N. Van Duy, N. Van Toan, D. T. T. Le, and N. Van Hieu, "Synthesis and gas-sensing characteristics of α- Fe2O3 hollow balls", J Sci-Adv Mater Dev, Vol. 1, No. 1, pp. 45-50, 2016.
  14. J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, and J. Liu, "Hematite solid and hollow spindles: Selective synthesis and application in gas sensor and photocatalysis", Mater. Res. Bull., Vol. 46, No. 8, pp. 1211-1218, 2011. https://doi.org/10.1016/j.materresbull.2011.04.004
  15. Z. Cao, Z. Jiang, L. Cao, Y. Wang, C. Feng, C. Huang, and Y. Li, "Lattice expansion and oxygen vacancy of α- Fe2O3 during gas sensing", Talanta, Vol. 221, p. 121616, 2021. https://doi.org/10.1016/j.talanta.2020.121616
  16. W. X. Jin, S. Y. Ma, Z. Z. Tie, X. H. Jiang, W. Q. Li, J. Luo, X. L. Xu, and T. T. Wang, "Hydrothermal synthesis of monodisperse porous cube, cake and spheroid-like α- Fe2O3 particles and their high gas-sensing properties", Sens. Actuator B-Chem., Vol. 220, pp. 243-254, 2015. https://doi.org/10.1016/j.snb.2015.05.098
  17. Q. Z. Zeng, S. Y. Ma, W. X. Jin, H. M. Yang, H. Chen, Q. Ge, and L. Ma, "Hydrothermal synthesis of monodisperse α- Fe2O3 hollow microspheroids and their high gas-sensing properties", J. Alloys Compd., Vol. 705, pp. 427-437, 2017. https://doi.org/10.1016/j.jallcom.2017.01.268
  18. S. T. Navale, D. K. Bandgar, S. R. Nalage, G. D. Khuspe, M. A. Chougule, Y. D. Kolekar, Shashwati Sen, and V. B. Patil, "Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications", Ceram. Int., Vol. 39, No. 6, pp. 6453-6460, 2013. https://doi.org/10.1016/j.ceramint.2013.01.074
  19. L. Yuan, Q. Jiang, J. Wang, and G. Zhou, "The growth of hematite nanobelts and nanowires-tune the shape via oxygen gas pressure", J. Mater. Res. Technol., Vol. 27, pp. 1014-1021, 2012. https://doi.org/10.1557/jmr.2012.19
  20. Y. S. Shim, K. C. Kwon, J. M. Suh, K. S. Choi, Y. G. Song, W. Sohn, S. Choi, K. Hong, J. M. Jeon, S. P. Hong, S. Kim, S. Y. Kim, C. Y. Kang, and H. W. Jang, "Synthesis of Numerous Edge Sites in MoS2 via SiO2 Nanorods Platform for Highly Sensitive Gas Sensor", ACS Appl. Mater. Interfaces, Vol. 10, No. 37, pp. 31594-31602, 2018. https://doi.org/10.1021/acsami.8b08114
  21. D. H. Kim, T. H. Kim, W. Sohn, J. M. Suh, Y. S. Shim, K. C. Kwon, K. Hong, S. Choi, H. G. Byun, J. H. Lee, and H. W. Jang,, "Au decoration of vertical hematite nanotube arrays for further selective detection of acetone in exhaled breath", Sens. Actuator B-Chem., Vol. 274, pp. 587-594, 2018. https://doi.org/10.1016/j.snb.2018.07.159
  22. Y. G. Song, Y. S. Shim, J. M. Suh, M. S. Noh, G. S. Kim, K. S. Choi, B. Jeong, S. Kim, H. W. Jang, B. K. Ju, and C. Y. Kang, "Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation", Small, Vol. 15, No. 40, p. 1902065, 2019. https://doi.org/10.1002/smll.201902065
  23. Y. Xia, H. Dai, H. Jiang, L. Zhang, J. Deng, and Y. Liu, "Three-dimensionally ordered and wormhole-like meso-porous iron oxide catalysts highly active for the oxidation of acetone and methanol", J. Hazard. Mater., Vol. 186, No. 1, pp. 84-91, 2011. https://doi.org/10.1016/j.jhazmat.2010.10.073
  24. G. Picasso, A. Quintilla, M. P. Pina, and J. Herguido, "Total combustion of methyl-ethyl ketone over Fe2O3 based catalytic membrane reactors", Appl. Catal. B, Vol. 46, No. 1, pp. 133-143, 2003. https://doi.org/10.1016/S0926-3373(03)00219-4
  25. X. Li, W. Wei, S. Wang, L. Kuai, and B. Geng, "Singlecrystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gassensing properties", Nanoscale, Vol. 3, No. 2, pp. 718-724, 2011. https://doi.org/10.1039/c0nr00617c
  26. K. C. Kwon, J. M. Suh, T. H. Lee, K. S. Choi, K. Hong, Y. G. Song, Y. S. Shim, M. Shokouhimehr, C.-Y. Kang, S. Y. Kim, and H. W. Jang, "SnS2 Nanograins on Porous SiO2 Nanorods Template for Highly Sensitive NO2 Sensor at Room Temperature with Excellent Recovery", ACS Sensors, Vol. 4, No. 3, pp. 678-686, 2019. https://doi.org/10.1021/acssensors.8b01526
  27. S. Yang, G. Lei, H. Xu, Z. Lan, Z. Wang, and H. Gu, "Metal oxide based heterojunctions for gas sensors: A review", Nanomaterials, Vol. 11, No. 4, pp. 1-26, 2021.
  28. K. Marre and H. Neddermeyer, "Growth of ordered thin films of NiO on Ag(100) and Au(111)", Surf. Sci., Vol. 287, pp. 995-999, 1993. https://doi.org/10.1016/0039-6028(93)91115-6