• 제목/요약/키워드: metal ion addition

검색결과 250건 처리시간 0.025초

Glass strengthening and coloring using PIIID technology

  • Han, Seung-Hee;An, Se-Hoon;Lee, Geun-Hyuk;Jang, Seong-Woo;Whang, Se-Hoon;Yoon, Jung-Hyeon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2016
  • Every display is equipped with a cover glass to protect the underneath displaying devices from mechanical and environmental impact during its use. The strengthened glass such as Gorilla glass.$^{TM}$ has been exclusively adopted as a cover glass in many displays. Conventionally, the strengthened glass has been manufactured via ion-exchange process in wet salt bath at high temperature of around $500^{\circ}C$ for hours of treatment time. During ion-exchange process, Na ions with smaller diameter are substituted with larger-diameter K ions, resulting in high compressive stress in near-surface region and making the treated glass very resistant to scratch or impact during its use. In this study, PIIID (plasma immersion ion implantation and deposition) technique was used to implant metal ions into the glass surface for strengthening. In addition, due to the plasmonic effect of the implanted metal ions, the metal-ion implanted glass samples got colored. To implant metal ions, plasma immersion ion implantation technique combined with HiPIMS method was adopted. The HiPIMS pulse voltage of up to 1.4 kV was applied to the 3" magnetron sputtering targets (Cu, Ag, Au, Al). At the same time, the sample stage with glass samples was synchronously pulse-biased via -50 kV high voltage pulse modulator. The frequency and pulse width of 100 Hz and 15 usec, respectively, were used during metal ion implantation. In addition, nitrogen ions were implanted to study the strengthening effect of gas ion implantation. The mechanical and optical properties of implanted glass samples were investigated using micro-hardness tester and UV-Vis spectrometer. The implanted ion distribution and the chemical states along depth was studied with XPS (X-ray photo-electron spectroscopy). A cross-sectional TEM study was also conducted to investigate the nature of implanted metal ions. The ion-implanted glass samples showed increased hardness of ~1.5 times at short implantation times. However, with increasing the implantation time, the surface hardness was decreased due to the accumulation of implantation damage.

  • PDF

금속이온 첨가와 활성중심 금속의 치환에 따른 내열성 카르복시펩 티다제 Taq의 효소적 특성 변화에 관한 연구 (Characterization of the enzymatic property of thermostable carboxypeptidase Taq by addition of metal ions and replacement of active center metal)

  • 이상현;하종명;하배진
    • 생명과학회지
    • /
    • 제12권6호
    • /
    • pp.682-687
    • /
    • 2002
  • 다양한 금속이온의 첨가에 따른 CPase Taq의 효소활성의 개선에 관한 연구를 행하였다. 1 mA의 코발트이온의 첨가에 의해 효소활성이 4배 이상 증가했고, 1 mA의 칼슘이온의 첨가에 의해서는 효소활성이 거의 3배 정도로 증가했다. 하지만 활성중심에 존재하는 아연이온은 효소활성에 영향을 주지 않았다. 활성중심의 금속 이온이 효소활성에 영향을 주는지를 알아보기 위해 활성중심을 차지하고 있는 아연이온을 본 효소를 효과적으로 활성화시키는 코발트이온으로 치환하였다. 그 결과, 코발트이온으로의 치환이 CPase Taq의 효소활성에 영향을 주지 않으므로, 코발트이온은 본 효소의 활성중심의 금속이온인 아연이온을 대신하여 CPase Taq가 효소활성을 가지는데 있어서 동일한 역할을 할 수 있는 금속이온이라 사료된다.

Effects of NaOH Treatment on the Adsorption Ability of Surface Oxidized Activated Carbon for Heavy Metals

  • Min-Ho Park;So-Jeong Kim;Jung Hwan Kim;Jae-Woo Park
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.16-23
    • /
    • 2023
  • Heavy metal (Zinc, Cadmium, Lead) adsorption onto surface modified activated carbon was performed in order to better understand the effect of sodium ion addition to activated carbon. Surface modification methods in this research included water washing, nitric acid washing, and sodium addition after nitric acid washing. These surface modifications generated oxygen functional groups with sodium ions on the surface of the activated carbon.. This caused the change of the specific surface area as well as in the ratio of the carboxyl groups. Heavy metal adsorption onto sodium-containing activated carbon was the most among the three modifications. After the adsorption of heavy metals, the carboxyl group ratio decreased and sodium ions on the surface of the activated carbon were almost non-existent after the adsorption of heavy metals onto sodium-containing activated carbon. The results from this research indicated that ion exchange with sodium ions in carboxyl groups effectively improved heavy metal adsorption rather than electrostatic adsorption and hydrogen ion exchange.

금속이온으로 치환된 PVA/SSA 이온교환막의 메탄올 투과특성 연구 (Studies on the Methanol Permeability through PVA/SSA Ion Exchange Membranes Substituted with Various Metal Cations)

  • 이충섭;정선영;전지현;신현수;임지원
    • 멤브레인
    • /
    • 제12권1호
    • /
    • pp.51-53
    • /
    • 2002
  • Poly(vinyl alcohol) (PVA)/sulfosuccinic acid $(SSA)-H^+$ 막은 1가 이온 $Li^+, Na^+,K^ + 2$가 이온 $Mg^{2+}, Ca^{2+},Ba^{2+}, 3$가 이온 $Al^{3+}$로 치환하였다. 또한 $Li^{+}$의 경우 치환도를 화하였다. 금속이온치환의 효과를 알아보기 위하여 Diffusion cell을 이용한 메탄올투과도를 측정하였다. 메탄올투과도를 1가 이온의 경우는 'Salting-out'효과뿐 아니라 electrostatic 가교와 금속 이온의 반응성에 의존한다고 사료되었다. 또한 $Li^+$이온이 경우 치환도에 비례하여 메탄올 투과도가 감소하였는데 이는 'Salting-out'효과에 기인한다고 사료되어진다.

Effect of Metal Ions on the Degradation and Adsorption of Two Cellobiohydrolases on Microcrystalline Cellulose

  • 김동원;장영헌;김창석;이남수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.716-720
    • /
    • 2001
  • To test the metal ion effect, hydrolysis experiments for two cellobiohydrolases (CBHⅠ and CBH Ⅱ) from Trichoderma reesei have been carried out in the presence of 10 mM metal ions, such as Cu++, Mn++, Ca++, Hg++, Ba++, Pb++, and Cd++. The addition of Mn++, Ba++, and Ca++(10 mM) during the hydrolysis of Avicel PH 101 caused an increase in the total reducing sugar (TRS) for CBH Ⅰ by 142, 135, and 114 percent, respectively. Those for CBH Ⅱ increased by 177, 175, and 115 percent, respectively. The Mn++ was the most stimulatory metal ion, whereas Hg++ was the most inhibitory metal ion. The adsorption experiments were performed to investigate how the influence of Mn++ and Hg++ on the hydrolysis is related to the adsorption of cellobiohydrolases on cellulose. The increase in TRS during hydrolysis by adding Mn++ caused an increase in adsorption affinity (Kad) and tightness (ΔHa). While, the decrease of TRS during hydrolysis by adding Hg++ caused a decrease in the adsorption affinity (Kad) and tightness (ΔHa). These results indicate the changes in the tightness and affinity of adsorption by adding metal ions play a crucial role in the degradation of the microcrystalline cellulose.

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

Adsorption and Separation of U (VI), Co (II), and Dy (III) Metal Ions on Crown Synthetic Resin

  • Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.43-50
    • /
    • 2017
  • Synthetic resins were combined 1-aza-12-crown-4 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 8%, and 16% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on metal ion adsorption for resin adsorbent, the metal ions showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in ethanol solvent was the order of uranium ($UO_2{^{2+}}$) > cobalt ($Co^{2+}$) > dysprosium ($Dy^{3+}$) ion, adsorbability of the metal ion was the crosslink in order of 1%, 2%, 8%, and 16% and it was increased with the lower dielectric constant. In addition, theses metal ions could be separated in the column with 1% crosslink resin by using nitric acid (pH 2.0) as an eluent.

Voltammetric Studies of Diazocalix[4]crown-6 for Metal Ion Sensing

  • Dong, Yun-Yan;Kim, Tae-Hyun;Lee, Chang-Seuk;Kim, Hyun-Jung;Lee, Jae-Hong;Lee, Joung-Hae;Kim, Ha-Suck;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3549-3552
    • /
    • 2010
  • The complex formation between diazocalix[4]dipropyl (1) and diazocalix[4]crown-6 ether (2) with alkali, alkaline earth and transition metal ions was investigated by voltammetry. Electrochemical properties of compounds 1 and 2 and their selectivity toward metal ions were evaluated in $CH_3CN$ solution by comparison of voltammetric behaviors of two phenols in each compound. Compounds 1 and 2 showed almost same voltammetric behavior which is two irreversible oxidation peaks caused by intramolecular hydrogen bonding between two phenols in 1 and 2. While, however, upon interacting with various metal ions, 1 with two propyl ether groups showed no significant changes in voltammetry, 2 with crown ether group caused significant voltammetric changes upon the addition of $Ba^{2+}$ to 2. Their behavior is closely related to the complex formation by entrapment of metal ion into crown ether cavity, and ion-dipole interaction between metal ion and two phenolic groups in calix[4]crown-6.

산성-산화성 분위기에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 연속식 이온교환 특성 (Continuous Ion Exchange Characteristics of Ni, Co and Ag Ions in Acidic-Oxidizing Conditions)

  • 김영호;양현수;김웅기
    • 공업화학
    • /
    • 제10권2호
    • /
    • pp.218-224
    • /
    • 1999
  • 원자로 정지시 혼상 탈염기의 최적 운전방법을 제안할 목적으로 산성-산화성 분위기에서 저농도의 Ni, Co 및 Ag 이온이 함유된 모의 냉각재 용액의 연속식 이온교환특성을 연구하였다. 금속 이온의 제거 용량에 미치는 양이온 교환수지 형태의 효과로서 $H^+$형 수지의 성능은 $Li^+$형 수지의 성능보다 약 6% 정도 높은 것으로 나타났다. 혼합층 이온교환 방법인 양이온과 음이온 수지의 혼합은 비혼합시와 비교하여 금속 이온들의 제거 용량에는 영향을 미치지 않았으나 금속 이온들의 파과곡선의 기울기를 매우 조금 증가시켰다. 냉각재의 산성-산화성 분위기와 관계된 영향으로서 붕산의 첨가는 금속 이온들의 파과곡선의 기울기를 매우 작게 감소시킨 반면, 과산화수소의 첨가는 금속이온들의 제거 용량을 약간 감소시켰다.

  • PDF

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • 최연호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF