• Title/Summary/Keyword: metal insulation

Search Result 157, Processing Time 0.033 seconds

Simulation and Light Impulse Test Results of Shieldless Vacuum Interrupter (아크쉴드가 없는 진공인터럽터의 유한요소해석 및 뇌임펄스 성능)

  • Yoon, Jae-Hun;Kim, Sung-Il;Kim, Boung-Ouk;Moon, Ki-Lim;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.45-45
    • /
    • 2010
  • This paper discusses the simulation and LI(light impulse) test of the shieldless vacuum interrupter concept. The shields of vacuum interrupter play an important role in absorbing the metal vapor. But shield distort the electric field distribution of inner vacuum interrupter. Therefore, the insulation efficiency will improve. if shield of vacuum interrupter inside does not exist. As a result, FEM simulation show that improve distribution of electrical field and equi-potential line. But LI test result dissimilar to FEM simulation result. Shieldless vacuum interrupter model lower BIL(breakdown impulse light) than vacuum interrupter have installed shield. Because conditioning process occurred metal vapor. This paper compared that FEM analysis and LI test of installed shield model and shieldless model.

  • PDF

A Study on the Electrical Physical Properties of Organic Thin Films for Manufacture in Power Device

  • Song, Jin-Won;Lee, Kyung-Sup
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.18-21
    • /
    • 2005
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understanding of the relationship between the structure and function of the monolayers. Maxwell displacement current (MDC) measurement has been employed to study the dielectric property of Langmuirfilms. MDC flowing across monolayers is analyzed using a rod-like molecular model. A linear relationship between the monolayer compression speed a and the molecular area Am. Compression speed a was about 30, 40, and 50 mm/min. Langmuir-Blodgett(LB) layers of Arachidic acid deposited by LB method were deposited onto slide glass as Y-type film. The structure of manufactured device is Aul Arachidic acid! AI, the number of accumulated layers are $9{\sim}21$. Also, we then examined of the Metal-Insulator-Metal(MIM) device by means of I-V. The I-V characteristics of the device are measured from -3 to+3 V. The insulation property of a thin film is better as the distance between electrodes is larger.

Electrical Properties of Organic Thin Film for Power Device (전력 소자용 유기박막의 전기적 특성)

  • Song, Jin-Won;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.20-22
    • /
    • 2006
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understanding of the relationship between the structure and function of the monolayers. Maxwell displacement current (MDC) measurement has been employed to study the dielectric property of Langmuir-films. MDC flowing across monolayers is analyzed using a rod-like molecular model. A linear relationship between the monolayer compression speed and the molecular area Am. Compression speed was about 30, 40, 50mm/min. Langmuir-Blodgett(LB)layers of Arachidic acid deposited by LB method were deposited onto slide glass as Y-type film. The structure of manufactured device is Au/Arachidic acid/Al, the number of accumulated layers are 9~21. Also, we then examined of the Metal-Insulator-Metal(MIM) device by means of I-V. The I-V characteristics of the device are measured from -3 to +3[V]. The insulation property of a thin film is better as the distance between electrodes is larger.

  • PDF

Genome Detection Using Hoechst 33258 Groove Binder (유기박막의 전기적 특성)

  • Song, Jin-Won;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.370-371
    • /
    • 2006
  • Maxwell displacement current (MDC) measurement has been employed to study the dielectric property of Langmuir-films. MDC flowing across monolayers is analyzed using a rod-like molecular model. A linear relationship between the monolayer compression speed and the molecular area Am. Compression speed was about 30, 40, 50mm/min. Langmuir-Blodgett(LB)layers of Arachidic acid deposited by LB method were deposited onto slide glass as Y-type film. The structure of manufactured device is Au/Arachidic acid/Al, the number of accumulated layers are 9~21. Also, we then examined of the Metal-Insulator-Metal(MIM) device by means of I-V. The I-V characteristics of the device are measured from -3 to +3[V]. The insulation property of a thin film is better as the distance between electrodes is larger.

  • PDF

Development of Heterojunction Electric Shock Protector Device by Co-firing (동시소성형 감전소자의 개발)

  • Lee, Jung-soo;Oh, Sung-yeop;Ryu, Jae-su;Yoo, Jun-seo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • Recently, metal cases are widely used in smart phones for their luxurious color and texture. However, when a metal case is used, electric shock may occur during charging. Chip capacitors of various values are used to prevent the electric shock. However, chip capacitors are vulnerable to electrostatic discharge(ESD) generated by the human body, which often causes insulation breakdown during use. This breakdown can be eliminated with a high-voltage chip varistor over 340V, but when the varistor voltage is high, the capacitance is limited to about 2pF. If a chip capacitor with a high dielectric constant and a chip varistor with a high voltage can be combined, it is possible to obtain a new device capable of coping with electric shock and ESD with various capacitive values. Usually, varistors and capacitors differ in composition, which causes different shrinkage during co-firing, and therefore camber, internal crack, delamination and separation may occur after sintering. In addition, varistor characteristics may not be realized due to the diffusion of unwanted elements into the varistor during firing. Various elements are added to control shrinkage. In addition, a buffer layer is inserted in the middle of the varistor-capacitor junction to prevent diffusion during firing, thereby developing a co-fired product with desirable characteristics.

Surface observation of Ni(OH)2 nanosheets fabricated by electrodeposition method (전착법에 의해 제작된 Ni(OH)2 나노 시트의 표면 관찰 및 분석)

  • Kim, Dong Yeon;Son, Injoon;Choi, Mun-Hyun
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • The pseudocapacitor has a high energy density characteristic because it accumulates charges through a paradic redox reaction. However, due to its strong insulation properties, metal hydroxides should be designed as structural systems optimized for charge transfer to support fast electron transport. Also, Nickel material is weak to heat and is easily deformed when used as a cathode material, so stability must be secured. In this study, nickel hydroxide was produced by electrodeposition to secure the stability of nickel. Electrodeposition is a synthetic method suitable for growing optimized nickel hydroxide because it allows fine control. Nickel hydroxide (Ni(OH)2) is a metal hydroxide used as a pseudocapacitor anode due to its high capacitance, electrical conductivity and resistance. Therefore, in order to determine how Ni(OH)2 nanosheets are formed and what are the optimization conditions, various measurement methods were used to focus on structural growth of nanosheets produced by electrodeposition.

Effect of Epoxy Dielectric Cooling on existing metal Porticoes in GIS (GIS내 금속이물 존재시 에폭시 절연코팅의 효과)

  • 곽희로;구교선;김영찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • In this paper, partial discharges(PDs), lift off and breakdown voltage were measured when metal particles existed in a model GIS coated with epoxy resin on its bottom electrode, and the measured results were analyzed after comparing with the model DIS not coated. In order to presume the various fault case in GIS, we measured the experimental values with changing some experimental factors, such as the mixture ratio of SF$\_$6//N$_2$, the pressure of the gases, the kinds and diameter of the metal particles, and the coating thickness of the epoxy resin. As a result, the PDIV increased with the thickness of the epoxy resin, while the magnitude of PDs decreased at the same condition. The lift off voltages of steel alloy particles were higher than that of copper particles, and increased wit diameter of particles. Futhermore, the lift off voltages in the case of the electrode coated with epoxy resin were higher than that in the case of the uncoated one. In addition, the thicker the thickness of the epoxy resin was, the higher the breakdown voltage were. Thus, it was confirmed that the GIS coated with epoxy resin on its inner surface could be improved in insulation performance.

Mathematical Modeling on the Corrosion Behavior of the Steel Casing and Pipe in Cathodic Protection System (음극방식 시스템에서의 압입관과 배관의 부식거동에 관한 수학적 모델링)

  • Kim Y.S.;Li S.Y.;Park K.W.;Jeon K.S.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • Mathematical modeling on the corrosion of the steel casing and main pipe due to the protection current resulting from a cathodic protection system was carried out using boundary element method. The model is consisted of Laplace's equation with non-linear boundary conditions(Tafel equations) and the iterative technique to determine the miexed potential of the steel casing. The model is applied to the normal steel casing section as well as abnormal one with defects such as metal touch and insulation defects. From the modeling procedure, we can calculate the potential distributions and current density distributions of the system. The theoretical results of the qualitatiive corrosion aspect along the steel casing and main pipe agree well with the experimental results within the experimental conditions studied.

  • PDF

Solidification Phenomena of Al-4.5wt.% Cu Alloy under Moderate Pressures (고압하에서의 Al-4.5wt.%Cu합금의 응고현상)

  • Cho, In-Sung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Solidification of aluminum alloys under moderate pressures has been investigated. Interfacial heat transfer coefficient at the casting/mold interface varies with time after pouring the molten metal into the die cavity, and therefore plays an important role in determining solidification sequence. The heat transfer coefficients were evaluated by using an inverse problem method, based on the measured temperature distribution. The calculated heat transfer coefficients were used for solidification simulation in the squeeze casting process. The effects of applied pressure and positions of insulation in the mold have also been investigated on solidification microstructures and on the formation of macrosegregation of Al-4.5wt.%Cu alloys.

  • PDF

Chatacterization of GaAs/AlGaAs optical phase modulator fabricated by self-aligned process (자기정렬공정에 의한 GaAs/AlGaAs 광위상변조기의 제작 및 특성 측정)

  • 김병성;정영철;변영태;박경현;김선호;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.287-294
    • /
    • 1996
  • An optical phase modulator is fabricated in GaAs/AlGaAs doble heterostructure wafer grown by MOCVD. A self-aligned process, in which the same photoresist pattern is used for both the waveguide etching and the insulation layer formation, is developed and is found to be very useful, Fabry-Perot interference technique is applied to the measurement and the phase modulation efficiency is measured to be 22.5$^{\circ}$/Vmm at 1.31 ${\mu}{\textrm}{m}$ for TE polarization.

  • PDF