DOI QR코드

DOI QR Code

Surface observation of Ni(OH)2 nanosheets fabricated by electrodeposition method

전착법에 의해 제작된 Ni(OH)2 나노 시트의 표면 관찰 및 분석

  • Kim, Dong Yeon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Choi, Mun-Hyun (Dongkang Tech Corp.)
  • 김동연 (경북대학교 금속신소재공학전공) ;
  • 손인준 (경북대학교 금속신소재공학전공) ;
  • 최문현 (동강테크)
  • Received : 2021.06.16
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

The pseudocapacitor has a high energy density characteristic because it accumulates charges through a paradic redox reaction. However, due to its strong insulation properties, metal hydroxides should be designed as structural systems optimized for charge transfer to support fast electron transport. Also, Nickel material is weak to heat and is easily deformed when used as a cathode material, so stability must be secured. In this study, nickel hydroxide was produced by electrodeposition to secure the stability of nickel. Electrodeposition is a synthetic method suitable for growing optimized nickel hydroxide because it allows fine control. Nickel hydroxide (Ni(OH)2) is a metal hydroxide used as a pseudocapacitor anode due to its high capacitance, electrical conductivity and resistance. Therefore, in order to determine how Ni(OH)2 nanosheets are formed and what are the optimization conditions, various measurement methods were used to focus on structural growth of nanosheets produced by electrodeposition.

Keywords

References

  1. Winter, M.; Brodd, R. J. Chem. ReV., 104, (2004) 4245-4269 https://doi.org/10.1021/cr020730k
  2. Simon, P.; Gogotsi, Y. Nat. Mater., 7, (2008) 845-854. https://doi.org/10.1038/nmat2297
  3. Kotz, R.; Carlen, M. Electrochim. Acta, 45, (2000) 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  4. Kong, L.; Lang, J.; Liu, M.; Luo, Y.; Kang, L. J. Power Sources 2009, 194, 1194-1201. https://doi.org/10.1016/j.jpowsour.2009.06.016
  5. Lang, J.; Kong, L.; Wu, W.; Liu, M.; Luo, Y. J. Solid State Electrochem. 2009, 13, 333-340. https://doi.org/10.1007/s10008-008-0560-0
  6. Patil, U. M.; Gurav, K. V.; Fulari, V. J.; Lokhande, C. D.; Joo, O. S. J. Power Sources 2009, 188, 338-342. https://doi.org/10.1016/j.jpowsour.2008.11.136
  7. Brousse, T., Belanger, D., Long, J. W. J. Electrochem. Soc. 162 (2015) A5185-A5189 https://doi.org/10.1149/2.0201505jes
  8. Long, X., Wang, Z., Xiao, S., An, Y., Yang, S. Mater. Today 19 (2016) 213-226 https://doi.org/10.1016/j.mattod.2015.10.006
  9. Deabate, S., Fourgeot, F., Henn, F. J. Power Sources 87 (2000) 125-136 https://doi.org/10.1016/S0378-7753(99)00437-1
  10. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. J. Phys. Chem. A 116 (2012) 6771-6784 https://doi.org/10.1021/jp303546r
  11. Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C., McIntyre, N. S. Surf. Sci. 600 (2006) 1771-1779 https://doi.org/10.1016/j.susc.2006.01.041
  12. Zhai, Z., Liu, Q., Zhu, Y., Cao, J., Shi, S. J. Alloys Compd. 775 (2019) 1316-1323 https://doi.org/10.1016/j.jallcom.2018.10.262
  13. Tian, X. et al. J. Mater. Chem. 22 (2012) 8029-8035 https://doi.org/10.1039/c2jm16057a