지기정렬공정에 의한 GaAs/AlGaAs 광위상변조기의 제작 및 특성 측정

김병성*・정영철**・문영태**・박경현**・김신호**・임동건**

*광운대학교 전자통신공학과 신기술연구소
**한국과학기술연구원 정보전자연구부
***고려대학교 물리학과

(1996년 4월 17일 반음)

MOCVD(metal-organic chemical vapour deposition) 방법으로 성장시킨 이중 이종결합구조 GaAs/AlGaAs 페이퍼를 이용하여 광위상변조기를 제작하였다. 제작과정에서 도파로와 절연층의 형성시 동일 포토레지스트 매진을 이용하는 자기정렬공정을 개발하여 그 효용성을 입증하였다. Fabry-Perot 간섭법을 이용하여 변조기의 위상변조효율을 측정하였으며, 1.31 μm 파장에서 TE 편광의 경우 22.5°/Vmm의 위상변조특성을 얻었다.

I. 서 론

GaAs와 InP 계열의 III-V 화합물반도체를 이용한 광 위상변조기는 광원 또는 결기와의 접계가 용이하더라도 아니라 저전압과 높은 동작 길이에도 큰 위상변조 양을 얻을 수가 있다. 그리고 소자 동작 특성 상 전계가 가 해지는 영역이 좁으므로 큰 전도성이 발생하여 LEI(linear electro-optic) 효과로 인한 손수 위상 전환이 크게 발생하게 된다. 또한, 광위상변조기는 코허런트통신시스템에 사용하여 수신단 동작뿐만 아니라 전체적인 시스템 동작의 향상을 기대할 수 있다. 그리고 Mach-Zehnder 간섭체 또는 directional coupler 등에서 일부분을 담당하여 광결합기 또는 광스위치로도 사용할 수 있다. 본 논문에서는 GaAs/AlGaAs 화합물 반도체를 MOCVD(metal-organic chemical vapour deposition) 방법으로 성장이 가능한 구조를 되도록 성장한 화합물에 반도체공정기술의 습식적을 이용하여 단일도트 도파로 제작하고 e-beam 진공증착기와 열확산로를 이용하여 전극을 완성하므로 소자를 제작하였다. 제작에 사용된 마스크는 레이저 광을 이용하여 직접 제작하여 사용하였으며, 절연층의 형성에는 자기정렬마스크 방법을 사용하였다. Fabry-Perot 간섭법을 이용하여 위상변조기의 위상변조효율을 측정하였다.

II. 위상변조기의 기본이론

광위상 변조기는 그림 1에 보는 바와 같이 일사된 광의 위상을 인가된 전압에 의하여 변조를 하는 전광 소자이다. 코허런트 시스템에서의 위상변조는 실제 구현된 시스템상에서 신호 감도를 향상하여 광섬유 시스템의 채널 밀도를 증가시킨다. 그러나 위상변조기의 구조가 레이저사이드외도의 이득영역과 같은 물질로 구성되어 많은 손실이 발생할 수도 있으나 IID(impurity induced disordering), 제생장, 또는 선택영역성장(selective area growth)을 하여 작게 할 수 있다. GaAs 기판 위에 MOCVD로 GaAs/AlGaAs 이중이 종합 구조의 박막을 성장시킨 페이퍼로 변조기를 제작하였다. 박막의 구성은 그림 2에서와 같이 도핑정도가 2×10¹⁸ cm⁻³ 이상이 되는 기판 위에 두께 3.5 μm의 N-AlₓGa₁₋ₓAs, 두께 0.125 μm의 n-GaAs, 두께 0.125 μm의 p-GaAs, 그리고 두께 1.5 μm의 P-AlₓGa₁₋ₓAs를 차례로 성장하고 두께 0.2 μm의 p⁺-GaAs를 달개층으로 하여 전극 형성용 용접하고 하였다. Nₐ, P-AlₓGa₁₋ₓAs는 도핑농도가 2×10¹⁷ cm⁻³ 이상이 되도록 도핑하였으며, nₐ, p-GaAs는 도핑을 5×10¹⁷ cm⁻³의 농도로 되도록 하였다. 그리고 달개층은 도핑농도가 2×10¹⁷ cm⁻³ 이상이 되도록 도핑하였다. n 형층의 도너로는 Si를 불순물로 사용하
그림 1. 입광파와 광위상복조기. 레이저방은 GaAs/Al-
GaAs 이중이중연합 구조로 이루어진 병조기에
입사된다. 도파로 내에 형성되는 pn 접합에서
전장에 기여되는 높이 높이 도파로 내의 수직적인
유호급질을 변화가 발생하도록 하기 하게 하고, 이에 따라 외부
인가점 V의 함수로 출력량의 위상이 변하도록 한다.

\[
\begin{align*}
\text{Layer} & : \\
\text{성분} & : \text{도하농도} \quad \text{두께} \\
p^+ - \text{GaAs} & : >2 \times 10^{18} \text{cm}^{-3} \quad 0.2 \mu \text{m} \\
\text{p} - \text{Al}_{0.6} \text{Ga}_{0.4}\text{As} & : 2 \times 10^{17} \text{cm}^{-3} \quad 1.5 \mu \text{m} \\
p - \text{GaAs} & : 5 \times 10^{16} \text{cm}^{-3} \quad 0.125 \mu \text{m} \\
n - \text{GaAs} & : 5 \times 10^{16} \text{cm}^{-3} \quad 0.125 \mu \text{m} \\
\text{N} - \text{Al}_{0.4} \text{Ga}_{0.6}\text{As} & : 2 \times 10^{16} \text{cm}^{-3} \quad 3.5 \mu \text{m} \\
n^+ - \text{GaAs (100)} & : >2 \times 10^{18} \text{cm}^{-3} \quad \text{substrate}
\end{align*}
\]

그림 2. (a) 재작된 위상병조기의 개략도. 입사된 광은
pn-GaAs 층을 따라 도파하며 전자파향은 110
방향이다. 수평광순식을 위해 strip-loaded 형태로
재작하였다. (b) 위상병조기 박막의 구조.
MOCVD 방법으로 GaAs/AlGaAs 이중이중연합
구조의 박막을 성장하였다. 코어는 pn-GaAs이고
클래도는 Al이 0.4인 PN-AlGaAs이다. 고온도의
p^+ -GaAs층은 전력 형성을 용이하도록 하게 한
\(p, n \)-층의 도파에는 각각 C, Si를 사용하였다.

\(p \) 형층은 C를 도파하였다.

이러한 구조에 반도체공정기술을 이용하여 단일모드
도파로를 형성한 후 외부전압을 일정 수 있도록 전극을

\[
\begin{array}{c}
\text{W} \\
\text{AlGaAs} \\
\text{n}=3.45 \\
\text{GaAs} \\
\text{n}=3.62 \\
\text{AlGaAs} \\
\text{n}=3.45 \\
\end{array}
\]

이상하여 소자를 제작하였다. 그림 2는 위상병조기와
사용된 박막의 구조이다. 전지적으로 pn-GaAs층은 코어
이고 PN-AlGaAs는 클래도로 동작하게 되어 입사된
빛을 수직적으로 구축하게 된다. 수평광 순식을 하기 위해
서는 스텝레이드의 두께차를 다르게 하여 수평적으로 유
호급질을 차가 발생하도록 하게 한다.\(^{13}\)

소자의 반조효과는 코어영역내의 공립층에서 일어나게
된다. pn 접합을 하면 양쪽의 접합면에서는 공립층이
형성되는데, 도파에 의한 방동에 따라 공간상의 공립층
폭과 내부전자의 크기가 다르게 된다. 그리고 각 부분바
이어스 간에 따라 공립층의 가정자리가 천천히 그에 따라
도파로 내의 흐름과 공립층이 변하게 된다. 이러한
변화는 그림 2의 박막구조를 기준으로 했을 때(이하 수
직, 수평은 그림 2의 기준으로 한다) 수직공간적으므로
분포하며 도파로 및 중첩영역에서 도파로 가는 빛의
위상과 크기에 영향을 주게 되고, 이로부터 위상병조효
과를 일으킬 수 있다.\(^{14,15}\) 즉, 압바이어스 전압이 변조필스가
되고, 광파가 반응과 신호가 되는 것이다.

도파로의 단일모드 동작 조건을 알기 위하여 유효광
질절법(EIM : effective index method)을 이용하였다.\(^{14}\)
소자의 수평광순식은 박막의 구조와 전원에 의하여 결
정되거나 수평광순식은 스텝레이드영상(P-AlGaAs 층)
의 두께차에 의한 유효광질절수로 인하여 발생한다. 본 논
문의 도파로의 형태는 그림 3에서와 같이 strip-loaded
형으로 클래도의 색상을 코어영역의 전까지 한 것이다.
도파로의 유효광질절수에 의한 도파로 새로운
자는 도파로의 폭(W)과 각 영역의 유효광질절수에 의해 결정된다. 여기
에서 각 영역의 유효광질절수는 각각(8)에 의해 결정
되어지는 양이다. 따라서 단일모드의 도파로 위해서는

\[
\begin{align*}
\text{W} & : \\
\text{AlGaAs} \\
\text{n}=3.45 \\
\text{GaAs} \\
\text{n}=3.62 \\
\text{AlGaAs} \\
\text{n}=3.45 \\
\end{align*}
\]

\[
\begin{array}{c}
\text{W} \\
\text{AlGaAs} \\
\text{n}=3.45 \\
\text{GaAs} \\
\text{n}=3.62 \\
\text{AlGaAs} \\
\text{n}=3.45 \\
\end{array}
\]
도파로의 폭과 식각길이를 적절하게 선택하여야 한다. 계산에서는 도파로의 식각 형태는 수직하고 가정하였다.

계산에서 식각길이를 1.4 μm 로 하였을 때 수평효과 굴절률은 0.0013이 되었으므로 단일모드가 되기 위해서는 도파로폭은 6 μm 이상이 되어야 했다. 실제 계산에서는 유전층과 급속층이 있기에 소정의 굴절률은 1.3 μm 과장에서 1.447이므로 이란 뿐이에서 괴영량을 미치지 않는다. 계산에서는 적합도파로의 폭과 길이가 있는 마스크를 레이저건소설과 핵을 이용하여 계산 사용하였으며, 이때 도파로폭은 3 μm 으로 5 μm 사이의 10가지 서로 다른 선폭변화가 있었도 하였다. 식각은 수직각 방향으로 1.3~1.6 μm의 값이 되도록 하였다.

반도체 pn 결합에서는 p-와 n-형 반도체의 거리가 증가할 때까지 적합계로부터 자유변동자가 되기 위하여 굴절률을 형성한다. 자유변동자의 해에 따라 발생하는 공간전하는 굴절영역 내에서 내부전하계를 발생 시킨다. 이러한 과정의 직접적인 결과로 굴절영역에서의 굴절률은 중심영역의 것으로부터 변화하게 된다. 굴절 영역에서의 굴절을 변화형으로써 그 개별 외부압으로의 변하고 직접적으로 발생하는 전기장과 외부전하계에 따라 간접적으로 발생하는 자유변동자의 중간에 의한 반

또는 인가전압이 가해져서 굴절층 내에서만 내부전도장이 형성될 때 나타난 것이다. 그리고 전원은 큰 인가 전압으로 인하여 굴절층의 클래드영역으로 확장된 형태

으로 보여주고 있다. 그림의 두 경우에 대한 굴절층의 두

층은

\[x_{\text{eff}} = x_0 = \frac{\sqrt{\varepsilon_0(V_D - V_s)}}{qN} \]

\[x_{\text{eff}} = x_2 = \frac{d}{2} + \frac{qN_d}{\varepsilon_1} \left[\frac{qN_d^2}{\varepsilon_1} - \frac{qN_d}{\varepsilon_1} \left(1 + \frac{N_0}{N_1} \right) \varepsilon_0 V_D - V_s \right] \]

\[x_{\text{eff}} = x_0 = \frac{d}{2} \left[x_0 - \frac{d}{2} \right] \]

으로 표현될 수 있다. 식 (1), (2)와 그림 4에서 \(x_{\text{eff}} \)는 각각 굴절층의 두계이자. \(N_0, N_1 \)는 코어의 \(p-, n-\)층의 도전성도이며, \(N_0, N_1 \)는 클래드의 \(p-, n-\)층의 도전성도이며, \(N_0, N_1 \)는 각각 코어와 클래드의 유전도이다. \(d, q, \varepsilon_0 \)는 각각 굴절층의 두계이고 \(\varepsilon_0 \)는 전자 전하량이다. \(V_D \)는 소자의 수직방향으로 이동하는 전기장을 나타내며 \(V_s \)는 각각 굴절층 내의 Built-in Voltage와 외부인가전압을 나타낸다. 굴절층에 결합되어 있는 전기장은 소자의 수직방향으로 동작하게 되므로 전파되는 1차원 해를 고려하여 구할 수 있다. 소자는 전극과 기판으로 연한 광전력콘도
작제하기 위해 클레드를 두롭게 하고, 기본모드 만을 도파하도록 하기 위해 도파로로의 두께는 약도를 한다. 도파로는 광학적으로 3층 직분포대로 모델링할 수 있으며, 도파로의 수직모드의 형태는 클레드에서의 Al 할우를, 코어의 두께, 그리고 도파하는 파장에 따라 다르다.

유한공질율은 공질체에 점재한 도파모드와 공간적으로 분포된 길이를 변화하는 등공의 평균으로 정의할 수 있다. 역바이어스 전압에 의한 공질을 변화는 매우 작고 주로 도파영역에서도 많아 나타난다. 외부인가전압이 없는 때에도 초기 공질이 크게 되므로 유한공질의 변화는 인가전압

\[\Delta \varphi = 2n_\varphi \frac{\Delta \varphi}{L} \]

(3)

과 같이 유한공질의 변화량에 비례하여 나타난다. 여기서 \(n \)는 전파모드의 파장이고 \(L \)은 도파로의 길이다.

단위인가 전압과 단위도파로 길이에 대한 변조기는 가을을 구하기 위해 식 (3)로부터

\[\Delta \phi = \frac{\Delta \varphi}{V_L} = 2n_\varphi \frac{\Delta \varphi}{V_L} \]

(4)

을 구하여 위상변이효율을 산정할 수 있다. 위상변조기는 이상적으로 외부전압의 인가에 따라 흘수의 변화는 적어야 하며 작은 단위인가 전압과 단위도파로 길이에 대해 \(n \)의 위상변이를 하여야 한다.

III. 위상변조기의 제작과정과 결과

\(n^*-GaAs \) 기판 위에 (001) 방향으로 박막을 성장시킨 뒤에 [110] 방향으로 도파로를 제작하고 전극을 형성하여 완성하였다.[8,10] 배터리의 이미징 과정에서 사용되는 마스크는 레이저 감광과 e-beam 증착기를 사용하여도파로가 있는 Cr-마스크를 제작하여 사용하였다. 마스크상에 있는 직분포는 3~5 \(\mu \)m의 선폭변화가 있도록 하였다. 전극형성에 자기작용마크 방법을 사용하였는데 이는 도파로 배터리 형성하기 위해 만들어진 포토레이저스트를 이용하여 도파로를 제작하고 전극을 형성한 후 lift-off를 하는 방법이다. 보통 절연층과 금속을 형성하기 위해서는 도파로 포토레이저스트의 역배터리가 되도록 하고, 그 위에 금속을 성장하여 lift-off를 하는 방법과 절연물을 성장하고, 원하지 않는 부분을 식각해

변후 금속을 성장하는 방법이 있다. 두 방법은 모노클로로렌스 용액을 사용하거나, 절연물질을 제거하는 절차가 있다는 변이로움이 있다. 본 논문에서 사용한 자기적공정은 절연층을 형성하고 금속을 증착하는 공정을 단순화시켰다.

시료세척을 하고 포토레이저스트 AZ-1350J 또는 AZ-1450J를 회전속도 5000 rpm으로 하여 40초 동안 도포를 하였다. 오존으로 포토레이저스트 도포된 시료를 85℃에서 25분간 구운 후, 폴센터크와 시료를 적절히 정렬하여 UV(ultra-violet) 램프로 120초간 노출하여 포토레이저스트 입감시켰다. 시료 위에 도포된 포토레이저스트의 올바른 가상결과를 출력하여 폴센터크와 시료의 접합을 좋게 하고 폴센터크의 경계면이 선명한 도파로 제작을 일으킬 수 있다. AZ-351 현상액과 촉매수를 1:2로 혼합하여 40~50℃ 동안 현상하였다. 현상액의 농도, 온도, 그리고 현상 시간에 의해 도파로 폴센터크 이미지가 크게 좌우된다. 시료를 촉매수로 잘 세척한 후 절단 가스로 분해 후 관찰하였다. 오존으로 90℃에서 15분간 구운 후 습식공작에 적절하게 포토레이저스트를 정화시키고, 시료 위에 형성된 신막을 제거하기 위해 열선을 증류수와 1:10의 비로 혼합한 수용액에 30~60초간 담근 후 절단 가스로 기료상의 연산 수용액을 붙였다.

인산(H_2PO_4): 과산화수소(H_2O_2): 증류수(H_2O) 19:6:75의 비로 혼합한 인산수용액으로 GaAs의 갈대층과 AlGaAs의 상실접촉층을 식각하였다. 식각 시간은 100~150초 동안 하였으며 식각는 \(y = 0.72x + 0.11 \)이다.[11,12] 여기서 \(\gamma(\mu m) \)는 식각 깊이이며 \(x(\mu m) \)는 식각시간이다. 식각 후 증류수로 잘 세척하여 인산수용액을 시료로부터 제거하였다. 식각을 하는동안 시료나 수용액에 요동을 주면 되도록 고르게 식각되지 않는다. 식각 후에 포토레이저스트는 초가기 지름의 모양이고 도파로는 [110] 방향의 단면에서 보았을 때 under-cut 형태로 되게 된다. 이러한 도파로와 포토레이저스트의 형태를 이용하여 절연층과 전극을 제작하였다.[8,10] 배터리 포토레이저스트가 도포된 상태에서 e-beam 증착기로 SiO_2를 2500 \(\AA \)의 두께로 증착하였다. 이세트로 offset를 하여 도파로 위의 포토레이저스트를 제거하였다. 그리고 \(P \)형 금속으로 Au:Zn/Au를 e-beam 증착기를 이용하여 1000/3000 \(\AA \)의 두께로 증착하였다.

5 \(\mu \)m 임차의 알루미나 분말을 이용하여 시료의 두께가 100 \(\mu \)m의 두께가 될 때까지 시료의 원면을 잡았다. 갈아내기 과정 동안의 시료의 고정은 다음과 같이 하였다. Hot-plate 로 지그를 단단히 그 위에 압스를 녹인 후 도파로가 있는 시료의 \(p \)층을 밑으로 하여 붙인다.
그래고 지그를 서서히 섞어 완스를 구체한다. 이 과정에서 시료 밑의 완스에 기름과 체계가 생기지 않도록 주의를 하여야 한다. 시료의 끝면을 polishing을 하게 되면 시료의 일관성은 좋은 단면을 연작하려는 용이해진다. 지그로부터 시료를 빠내기 위해서는 TCE 또는 아세톤을 약간 묻어 시료 밑의 완스를 제거한다. 직접하게 묻을 경우 격리가 시료를 때려들 수 있어 이를 방지하기 위해 페터페이스를 비어버리면 간에 갇혀 놓은 후 그 위에 시료가 묻어 있는 지그를 놓는다.

n형 금속으로 Au : Ge/Ni/Au를 2000/100/3000 Å의 두께로 e-beam 증착기를 사용하여 증착하였다. 금온 환경에서 내부 온도가 420℃의 온도로 150~180초 동안 넣어 전극을 완성하였다. 끝으로 좋은 단면 상태가 되도록 알 또는 스크램버를 이용하여 정단하였다. 시료의 n형 전극을 Au 코팅한 마운트 위에 설비하여 본 실험으로 붙여 점지 고정하였다. 이때 페이스가 도파로 단면을 가리지 않도록 주의한다. 시료의 p형 전극 위에는 설비하여 본토를 사용하여 본토를 하였으며 본토의 하이어는 외부 측정으로부터 보호하기 위해 마개 푹신도록 절연 매달리기를 사용하여 고정하였다. 그림 5는 전극 형성과정에서 자기장을 빼오프 방법을 사용하여 제작된 소자의 SEM(Scanning electron microscope) 사진으로 배출은 실질의 10^5배이다. 이때 사용된 포트레티스트는 AZ-1350J 암으로 인산수용액으로 1.6μm 젖이가 되도록 수지시험을 하였다. 도파로서의 헤 부분의 폭은 1μm이고 아랫 부분은 3.5μm이다. SiO2는 3000 Å가 작중되어 있고 금속은 Au : Zn와 Au로 각각 1000 Å의 두께로 성장되어 있다. 도파로 코어의 폭은 0.3μm이고, SEM 사진을 경계하여 플로로스(NaOCl) 5서로 5초 동안 스테일 식작을 하였다.

IV. 측정 결과

변조기의 도파 상의 위상변이 효율을 측정하기 위해 Fabry-Perot 간섭을 이용한 측정시스템을 구현하였다. 단일모드 도파특성을 갖는 변조기의 측정에는 Fabry-Perot 간섭측정이 유리하며, 단종모드 도파에는 Mach-Zehnder 간섭측정을 이용하여야 한다. Fabry-Perot 간섭측정은 도파로 단면 자체의 내부 반사율을 이용하는 것으로 단면 두반사 코팅을 하지 않고 측정할 수 있다는 장점이 있다. Mach-Zehnder 간섭 측정에서는 위상변조기가 있는 암(arm) 외에 위상의 기준이 되는 기준이 있어야 하며, 소자의 단면을 두반사 코팅을 하여야 한다는 것과 전원의 절도가 충분히 허용하는 단점을 있다. 그러나 Fabry-Perot 간섭측정은 소자 자체의 단면 반사를 이용하는 것으로 출력의 근방 영역에서 출력량을 받침기로 정파하여 전압에 따른 광응답을 측정하는 것이다. 그림 6에 Fabry-Perot 측정기에서의 입사파, 반사파, 그리고 내부파가 정의되어 있다.

도파로 내의 유호철질이 변함에 따라 Fabry-Perot 측정기의 optical length가 변하게 된다. 그리고 단면 두반사 코팅을 하지 않으므로, optical length의 변화에 의해 정파기의 두께량이 변하게 되므로 이를 측정하여 위상변이를 산출하게 된다. 정파기의 구조는

\[T = \frac{|a_1|^2}{|a_i|^2} = \frac{(1-R)e^{-\alpha d}}{(1-R)e^{-\alpha d} + 4\alpha \sin^2 \phi} \]

\[R = \frac{|b_1|^2}{|a_i|^2} \]

\[a_1 \]
\[a_i \]
\[a_2 \]
\[b_1 \]
\[b_i \]

그림 5. 제작된 소자의 SEM 사진. 도파로의 코어 부분과 경사면 부분을 제외한 전면에 SiO2가 작중되어 있고, 그 위에 금속이 성장되어 있다. 코어의 수평폭은 폭 2.2μm이고, 코어의 수직폭은 0.3μm이다.

그림 6. Fabry-Perot 정파기. 입사파(a_i), 반사파(b_i), 정파기 내부의 파(a_1, b_1), 두파파(a_2)가 정의되어 있다.
그림 7. Fabry-Perot 간섭법을 이용한 측정장치의 개념도.

그림 8. 변조기의 단일모드 도파 특성을 보이는 플라로 이드 사진. 도파로의 길이는 4 mm이고, 각각 길이는 1.35 μm이다. 그리고 코어의 수평축은 평균 3.3 μm이다.

이항을 나타낸다. \(r = Re^{-\phi} \)로 \(R \)은 도파로 단면의 전력 반사를 나타내며, \(\phi \)와 \(\alpha \)가 변하게 되므로\(T \)은 전압의 함수로 되는 것이다. 전압의 변화에 따른\(T \)의 변화의 측정에서 최소환(최대치)과 그 다음 최소환(최대치간의 전압자는 \(\pi \)만큼의 위상 차이를 하는데 필요한 양으로, 이로부터 단위소자극이당 위상차이효율\([\pi/N_{mm}] \)을 산출하게 된다.

측정장치는 그림 7과 같이 구성하였다. 출력장치가 1 mW이고 동작파장이 1,31 μm인 DFB-LD를 광원으로 사용하였다. 단일모드 광섬유로 pig-tailing 결합을 하였고 광섬유로부터의 출력은 0.5 mW였다. 결합된 빛의 라인 패턴을 이용하여 TE 모드만을 Pivot하였다. NA 0.45인 대폭렌즈를 이용하여 도파로의 단면 코어영역에 충돌이 맞추었고 도파로의 축평행은 대폭렌즈를 통하여 IR-vidicon(HAMAMATSU C1000)에 집중시키거나 광섬유에 집중시키게 하였다. 최적의 단일모드 도파를 확인하기 위해 XYZ 변환기로 측정의 위치를 변화시키며 모니터링을 하였다. 이때에는 축평행은 IR-vidicon으로 모조되며 모니터로 모드상태를 관찰하였다. 좋은 도파특성의 단일모드가 되었을 때 축평행을 Ge-포토다이오드로 집속하여 오실로스코프와 컴퓨터로 인가 전압에 따른 출력측을 조사하였다. 전압변화와 판독는 오실로스코프에 함께 연결하여 각 변화를 동시에 검출할 수 있도록 하였다.

그림 8은 완성된 변조기의 단일모드 도파특성을 조사한 결과의 플라로 이드 사진이다. 변조기의 도파로는 4 mm로 절단하였고 각각 길이는 1.35 μm가 되도록 하였다. 도파로 윗 부분의 폭은 2.1 μm이고 아래의 폭은 4.6 μm었다. 사진에서 아래 부분의 국선은 도파로의 수평측으로 사진 가운데의 하단 점이 도파로 밖의 근방영역 분포로 공간필터의 도움 없이 좋은 단일모드 특성을 보였다. Fabry-Perot 간섭법을 이용하여 광변조 특성을 관측하기 위해서는 빛 수 없으면 단일도파가 되도록 하여야 하며, 그렇지 않은 다중모드도파인 경우에는 기존모드가 가장 크게 도파가 되도록 하여야 한다.

그림 9는 Fabry-Perot 간섭법을 이용하여 측정된 인 가전압에 따른 출력측을 보이고 있다. 인가전압은 0~10 V의 범위로 4~5 Hz의 주파수를 사용하였다. 그림 9(a)는 삼각파전압을 인가하였을 때 도파로에서 삼각파의 출력으로 최대내정으로 정면적으로 변하고 있음을 보 foss. 삼각파의 삼각파는 신호발생기로부터의 입력이 고 하단이 변조기의 광출력을 나타낸다. 그것에서 보이고 있는 변조기의 \(n \)의 위상차이를 위한 전압차인 \(V_n \)는 2.0 V로 위상차이효율은 22.5°/V/mm가 된다. 그림 9(b)는 동일파를 가졌을 때의 응답이다. 출력된 빛의 세기가 전압의 세기에 따라 정원적으로 잘 변하고 있고 \(V_n \)는
도파로의 선폭이 작아져야 한다.

V. 결론

MOCVD 방법으로 성장한 이중이종결합 구조의 GaAs/AlGaAs 해이러와 단일모드 도파로를 제작하고 전극을 완성하므로써 광원성별조리를 제작하였다. 마스크는 선폭의 변화가 있는 직선도파로 Cr-마스크를 제작하여 사용하였다. 진연층의 형성에는 페탄염이미징을 위해 사용한 포도리지스트를 마스크로 사용하여 진연층을 만드는 자기선탄마스크 liftoff 방법을 이용하였다. 하나의 시료머니에 있는 도파로는 3~5 μm의 10가지 서로 다른 선폭변화가 있음을 하였으며, 인산수용액으로 1.3~1.6 μm의 길이가 되도록 습식감자를 하여 단일모드 도파로를 제작하였다. 전극의 형상에 사용한 금속은 p-형 금속에는 \(\text{Au} : \text{Zn} \), \(\text{Au} \)를 사용하였고, n-형 금속은 \(\text{Au} : \text{Ge} \), \(\text{Ni} \), \(\text{Au} \)로 중착하였다. 전극의 완성을 위한 엎치는 \(\text{N}_{2} \) 환경의 연화선로를 사용하였다.

Fabry-Perot 간섭 측정시스템을 구성을 위하여 위상형효율 \(v_{\text{V/mm}} \)을 측정하였다. 평균은 동작장치에 1.31 μm 인 DFB-LD를 단일모드 광섬유로 pig-tailing 간섭자를 하여 사용하였다. \(v_{\text{V}} \)는 4 mm의 도파로 길이에서 평균적으로 2.0 V로 위상형효율은 22.5 V/mm임을 알 수 있었다.
전극의 세기가 커질수록 출력의 세기가 전체적으로 작아지는 것은 \(\text{ER} \) 효과에 의한 것으로 추정된다.

참고 문헌

[5] S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure wave-
Characterization of GaAs/AlGaAs Optical Phase Modulator
Fabricated by Self-Aligned Process

Byoungsung Kim*, Youngchul Chung*, Young Tae Byun**,
Kyoung Hyun Park**, Sun Ho Kim** and Tong Kun Lim***

*Dept. of Electronic Communications Engineering, the Institute of New Technology,
Kwangwoon University, Seoul, 139-701, Korea
**Division of Electronics and Informations Technology,
Korea Institute of Science and Technology, Seoul, 130-650, Korea
***Dept. of Physics, Korea University, Seoul, 136-701, Korea

(Received: April 17, 1996)

An optical phase modulator is fabricated in GaAs/AlGaAs doble heterostructure wafer grown by MOCVD. A self-aligned process, in which the same photore sist pattern is used for both the waveguide etching and the insulation layer formation, is developed and is found to be very useful. Fabry-Perot interference technique is applied to the measurement and the phase modulation efficiency is measured to be 22.5°/V·mm at 1.31 μm for TE polarization.