Browse > Article
http://dx.doi.org/10.5695/JKISE.2021.54.3.152

Surface observation of Ni(OH)2 nanosheets fabricated by electrodeposition method  

Kim, Dong Yeon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Choi, Mun-Hyun (Dongkang Tech Corp.)
Publication Information
Journal of the Korean institute of surface engineering / v.54, no.3, 2021 , pp. 152-157 More about this Journal
Abstract
The pseudocapacitor has a high energy density characteristic because it accumulates charges through a paradic redox reaction. However, due to its strong insulation properties, metal hydroxides should be designed as structural systems optimized for charge transfer to support fast electron transport. Also, Nickel material is weak to heat and is easily deformed when used as a cathode material, so stability must be secured. In this study, nickel hydroxide was produced by electrodeposition to secure the stability of nickel. Electrodeposition is a synthetic method suitable for growing optimized nickel hydroxide because it allows fine control. Nickel hydroxide (Ni(OH)2) is a metal hydroxide used as a pseudocapacitor anode due to its high capacitance, electrical conductivity and resistance. Therefore, in order to determine how Ni(OH)2 nanosheets are formed and what are the optimization conditions, various measurement methods were used to focus on structural growth of nanosheets produced by electrodeposition.
Keywords
Electrodeposition; Hexa-methylenetetramine (HMT); $Ni(OH)_2$ nanosheet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Patil, U. M.; Gurav, K. V.; Fulari, V. J.; Lokhande, C. D.; Joo, O. S. J. Power Sources 2009, 188, 338-342.   DOI
2 Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C., McIntyre, N. S. Surf. Sci. 600 (2006) 1771-1779   DOI
3 Zhai, Z., Liu, Q., Zhu, Y., Cao, J., Shi, S. J. Alloys Compd. 775 (2019) 1316-1323   DOI
4 Tian, X. et al. J. Mater. Chem. 22 (2012) 8029-8035   DOI
5 Kotz, R.; Carlen, M. Electrochim. Acta, 45, (2000) 2483-2498.   DOI
6 Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. J. Phys. Chem. A 116 (2012) 6771-6784   DOI
7 Simon, P.; Gogotsi, Y. Nat. Mater., 7, (2008) 845-854.   DOI
8 Long, X., Wang, Z., Xiao, S., An, Y., Yang, S. Mater. Today 19 (2016) 213-226   DOI
9 Deabate, S., Fourgeot, F., Henn, F. J. Power Sources 87 (2000) 125-136   DOI
10 Winter, M.; Brodd, R. J. Chem. ReV., 104, (2004) 4245-4269   DOI
11 Kong, L.; Lang, J.; Liu, M.; Luo, Y.; Kang, L. J. Power Sources 2009, 194, 1194-1201.   DOI
12 Lang, J.; Kong, L.; Wu, W.; Liu, M.; Luo, Y. J. Solid State Electrochem. 2009, 13, 333-340.   DOI
13 Brousse, T., Belanger, D., Long, J. W. J. Electrochem. Soc. 162 (2015) A5185-A5189   DOI