• Title/Summary/Keyword: metabolite pathway

Search Result 133, Processing Time 0.026 seconds

Investigation of biodegradation pathway of dibenzofuran by Novosphingobium pentaromativorans US6-1 via transcriptomic and mass-spectrometric analysis (전사체와 대사물질 구조분석을 통한 Novosphingobium pentaromativorans US6-1의 dibenzofuran 분해 경로 해석)

  • Na, Hyeyun;Kwon, KaeKyoung
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • Biodegradation pathway of dibenzofuran (DBF) of Novosphingobium pentaromativorans US6-1, a high-molecular-weight polycyclic aromatic hydrocarbons degrading strain, was investigated via analysis of metabolic intermediates and transcriptome. As a result, 3(2H)-benzofuranone, a basic skeleton of the metabolic intermediates produced by lateral dioxygenation process, was detected as an intermediate. RNA-Seq analysis confirmed that most of the expressed genes upon exposure to DBF were related to the lateral degradation pathway. Based on these results, the biodegradation pathway of DBF by N. pentaromativorans US6-1 was proposed.

Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells

  • Kim, Kkot Byeol;Lee, Seonah;Kim, Jung Hee
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.3-11
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.

Evaluation of Recent Data Processing Strategies on Q-TOF LC/MS Based Untargeted Metabolomics

  • Kaplan, Ozan;Celebier, Mustafa
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • In this study, some of the recently reported data processing strategies were evaluated and modified based on their capabilities and a brief workflow for data mining was redefined for Q-TOF LC-MS based untargeted metabolomics. Commercial pooled human plasma samples were used for this purpose. An ultrafiltration procedure was applied on sample preparation. Sample set was analyzed through Q-TOF LC/MS. A C18 column (Agilent Zorbax 1.8 µM, 50 × 2.1 mm) was used for chromatographic separation. Raw chromatograms were processed using XCMS - R programming language edition and Isotopologue Parameter Optimization (IPO) was used to optimize XCMS parameters. The raw XCMS table was processed using MS Excel to find reliable and reproducible peaks. Totally 1650 reliable and reproducible potential metabolite peaks were found based on the data processing procedures given in this paper. The redefined dataset was upload into MetaboAnalyst platform and the identified metabolites were matched with 86 metabolic pathways. Thus, two list were obtained and presented in this study as supplement files. The first list is to present the retention times and m/z values of detected metabolite peaks. The second list is the metabolic pathways related with the identified metabolites. The briefly described data processing strategies and dataset presented in this study could be beneficial for the researchers working on untargeted metabolomics for processing their data and validating their results.

Biotransformation of Valdecoxib by Microbial Cultures

  • Srisailam, K.;Veeresham, C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.809-816
    • /
    • 2010
  • Microbial biotransformations can be used to predict mammalian drug metabolism. The present investigation deals with microbial biotransformation of valdecoxib using microbial cultures. Thirty-nine bacterial, fungal, and yeast cultures were used to elucidate the biotransformation pathway of valdecoxib. A number of microorganisms metabolized valdecoxib to various levels to yield nine metabolites, which were identified by HPLC-DAD and LC-MS-MS analyses. HPLC analysis of biotransformed products indicated that a majority of the metabolites are more polar than the substrate valdecoxib. Basing on LC-MS-MS analysis, the major metabolite was identified as a hydroxymethyl metabolite of valdecoxib, whereas the remaining metabolites were produced by carboxylation, demethylation, ring hydroxylation, N-acetylation, or a combination of these reactions. The hydroxymethyl and carboxylic acid metabolites were known to be produced in metabolism by mammals. From the results, it can be concluded that microbial cultures, particularly fungi, can be used to predict mammalian drug metabolism.

Synthesis of unnatural compounds by enzyme engineering

  • Morita, Hiroyuki
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.34-34
    • /
    • 2019
  • About 60% of the present drugs were developed from natural products with unique chemical diversity and biological activities. Hence, discovery of new bioactive compounds from natural products is still important for the drug development. On the other hand, breakthrough made in synthetic biology has also begun to supply us with many useful compounds through manipulation of biosynthetic gene for secondary metabolites. Theoretically, this approach can also be exploited to generate new unnatural compounds by intermixing genes from different biosynthetic pathway. Considering the potential, we are studying about bioactive compounds in natural sources, as well as the biosynthesis of natural products including engineering of the secondary metabolite enzymes to make new compounds in order to construct the methodological basis of the synthetic biology. In this symposium, engineering of secondary metabolite enzymes that are involved in the biosynthesis of plant polyketides to generate new compounds in our laboratory will be mainly introduced.

  • PDF

A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

  • Hee, Oh-Seon;Lee, Bang-Wool;Quan, Yin-Hu;Kim, Hyun-Mi;Lee, Byung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.107.1-107.1
    • /
    • 2003
  • 20-O-(${\beta}$-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponins formed from ginsenosides Rb1, Rb2 and Rc, is suggested to be a potential chemopreventive agent. Here we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (6 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. (omitted)

  • PDF

2-Undecanone derived from Pseudomonas aeruginosa modulates the neutrophil activity

  • Jeong, Yu Sun;Huh, Sunghyun;Kim, Ji Cheol;Park, Ji Ye;Lee, ChaeEun;Kim, Min-Sik;Koo, JaeHyung;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.395-400
    • /
    • 2022
  • Pseudomonas aeruginosa (P. aeruginosa) is a well-known Gramnegative opportunistic pathogen. Neutrophils play key roles in mediating host defense against P. aeruginosa infection. In this study, we identified a metabolite derived from P. aeruginosa that regulates neutrophil activities. Using gas chromatography-mass spectrometry, a markedly increased level of 2-undecanone was identified in the peritoneal fluid of P. aeruginosa-infected mice. 2-Undecanone elicited the activation of neutrophils in a Gαi-phospholipase C pathway. However, 2-undecanone strongly inhibited responses to lipopolysaccharide and bactericidal activity of neutrophils against P. aeruginosa by inducing apoptosis. Our results demonstrate that 2-undecanone from P. aeruginosa limits the innate defense activity of neutrophils, suggesting that the production of inhibitory metabolites is a strategy of P. aeruginosa for escaping the host immune system.

Metabolism of Dimethylphthalate by Aspergillus niger

  • Pradeepkmar;Sharanagouda;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.518-521
    • /
    • 2000
  • Aspergillus niger is capable of metabolizing dimethyphthalate. The maximum weight of mycelium wa observed afterabout 6-8 dys of incubation. A TLC analysis revealed the accumulation of metabolites in the resting cell culture. Monomethylphthalate, phthalate, and protocatechuate were shown to be the intermediates by thin layer chromatographic and spectrophotometric analyses. The fungus metabolized dimethylphthalate through monomethylphthalate, phthalate, and protocatechuate as evidenced by the oxygen uptake and an enzymatic analysis. The terminal aromatic metabolite, protocatechuate, is metabolized via the ortho-cleavage pathway.

  • PDF

Practical Guide to NMR-based Metabolomics - III : NMR Spectrum Processing and Multivariate Analysis

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.46-53
    • /
    • 2018
  • NMR-based metabolomics needs various knowledge to elucidate metabolic perturbation such as NMR experiments, NMR spectrum processing, raw data processing, metabolite identification, statistical analysis, and metabolic pathway analysis regarding technical aspects. Among them, some concepts of raw data processing and multivariate analysis are not easy to understand but are important to correctly interpret metabolic profile. This article introduces NMR spectrum processing, raw data processing, and multivariate analysis.

Thymidylate Synthase and Dihydropyrimidine Dehydrogenase Levels Are Associated with Response to 5-Fluorouracil in Caenorhabditis elegans

  • Kim, Seongseop;Park, Dae-Hun;Shim, Jaegal
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.344-349
    • /
    • 2008
  • 5-Fluorouracil (5-FU), a pyrimidine antagonist, has a long history in cancer treatment. The targeted pyrimidine biosynthesis pathway includes dihydropyrimidine dehydrogenase (DPD), which converts 5-FU to an inactive metabolite, and thymidylate synthase (TS), which is a major target of 5-FU. Using Caenorhabditis elegans as a model system to study the functional and resistance mechanisms of anti-cancer drugs, we examined these two genes in order to determine the extent of molecular conservation between C. elegans and humans. Overexpression of the worm DPD and TS homologs (DPYD-1 and Y110A7A.4, respectively) suppressed germ cell death following 5-FU exposure. In addition, DPYD-1 depletion by RNAi resulted in 5-FU sensitivity, while treatment with Y110A7A.4 RNAi and 5-FU resulted in similar patterns of embryonic death. Thus, the pathway of 5-FU function appears to be highly conserved between C. elegans and humans at the molecular level.