DOI QR코드

DOI QR Code

Investigation of biodegradation pathway of dibenzofuran by Novosphingobium pentaromativorans US6-1 via transcriptomic and mass-spectrometric analysis

전사체와 대사물질 구조분석을 통한 Novosphingobium pentaromativorans US6-1의 dibenzofuran 분해 경로 해석

  • 나혜윤 (해양생명공학연구센터 한국해양과학기술원) ;
  • 권개경 (해양생명공학연구센터 한국해양과학기술원)
  • Received : 2017.11.09
  • Accepted : 2018.01.23
  • Published : 2018.03.31

Abstract

Biodegradation pathway of dibenzofuran (DBF) of Novosphingobium pentaromativorans US6-1, a high-molecular-weight polycyclic aromatic hydrocarbons degrading strain, was investigated via analysis of metabolic intermediates and transcriptome. As a result, 3(2H)-benzofuranone, a basic skeleton of the metabolic intermediates produced by lateral dioxygenation process, was detected as an intermediate. RNA-Seq analysis confirmed that most of the expressed genes upon exposure to DBF were related to the lateral degradation pathway. Based on these results, the biodegradation pathway of DBF by N. pentaromativorans US6-1 was proposed.

다환 방향족 탄화수소(polycyclic aromatic hydrocarbon, PAH) 우수 분해균주인 Novosphingobium pentaromativorans US6-1의 dibenzofuran (DBF) 분해경로를 밝히기 위하여 중간대사물질 분석과 전사체 분석을 진행하였다. GC/MS로 중간대사물질을 분석한 결과, 3(2H)-벤조퓨라논이 검출되었는데 이 화합물은 측면 이산소화에 의해 생성된 중간대사산물들의 기본 골격이 되는 물질로써 균주 US6-1에 의한 DBF의 분해가 측면 이산소화로 진행될 가능성을 시사한다. RNA-Seq 분석 결과, 균주 US6-1이 DBF에 노출되었을 때 발현되는 유전자들의 대부분이 lateral dioxygenation과 관련이 있다는 것을 확인하였다. 이상의 결과로부터N. pentaromativorans US6-1에 의해 일어나는 측면 이산소화를통한 DBF 분해경로와 관련 유전자들을 제시하였다.

Keywords

References

  1. Bordajandi, L.R., Gomez, G., Abad, E., Rivera, J., Del Mar Fernandez-Baston, M., Blasco, J., Gonzalez, M.J. 2004. Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain): levels and health implications. J. Agric. Food Chem. 52, 992-1001. https://doi.org/10.1021/jf030453y
  2. Chai, B., Tsoi, T.V., Iwai, S., Liu, C., Fish, J.A., Gu, C., Johnson, T.A., Zylstra, G., Teppen, B.J., Li, H., et al. 2016. Sphingomonas wittichii strain RW1 genome-wide gene expression shifts in response to dioxins and clay. PLoS One 11, e0157008. https://doi.org/10.1371/journal.pone.0157008
  3. Chang, Y.S. 2008. Recent developments in microbial biotransformation and biodegradation of dioxins. J. Mol. Microbiol. Biotechnol. 15, 152-171. https://doi.org/10.1159/000121327
  4. Choi, D.H., Kwon, Y.M., Kwon, K.K., and Kim, S.J. 2015. Complete genome sequence of Novosphingobium pentaromativorans US6-$1^T$. Stand. Genomic Sci. 10, 107. https://doi.org/10.1186/s40793-015-0102-1
  5. Fiedler, H., Abad, E., van Bavel, B., de Boer, J., Bogdal, C., and Malisch, R. 2013. The need for capacity building and first results for the Stockholm Convention Global Monitoring Plan. Trends Anal. Chem. 46, 72-84.
  6. Fortnagel, P., Harms, H., Wittich, R.M., Krohn, S., Meyer, H., Sinnwell, V., Wilkes, H., and Francke, W. 1990. Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl. Environ. Microbiol. 56, 1148-1156.
  7. Fukuda, K., Nagata, S., and Taniguchi, H. 2001. Isolation and characterization of dibenzofuran-degrading bacteria. FEMS Microbiol. Lett. 208, 179-185.
  8. Gai, Z., Yu, B., Li, L., Wang, Y., Ma, C., Feng, J., Deng, Z., and Xu, P. 2007. Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole degrading Sphingomonas sp. strain. Appl. Environ. Microbiol. 73, 2832-2838. https://doi.org/10.1128/AEM.02704-06
  9. Hay, A. 1979. Dioxin: the 10-year battle that began with agent orange. Nature 278, 108-109.
  10. Hiraishi, A. 2003. Biodiversity of dioxin-degrading microorganisms and potential utilization in bioremediation. Microbes Environ. 18, 105-125.
  11. Hong, H.B., Nam, I.H., Murugesan, K., Kim, Y.M., and Chang, Y.S. 2004. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation 15, 303-313. https://doi.org/10.1023/B:BIOD.0000042185.04905.0d
  12. Jensen, A.M., Finster, K.W., and Karlson, U. 2003. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211. Environ. Toxicol. Chem. 22, 730-735. https://doi.org/10.1002/etc.5620220408
  13. Jin, S., Zhu, T., Xu, X., and Xu, Y. 2006. Biodegradation of dibenzofuran by Janibacter terrae strain XJ-1. Curr. Microbiol. 53, 30-36. https://doi.org/10.1007/s00284-005-0180-1
  14. Le, T.T., Murugesan, K., Nam, I.H, Jeon, J.R., and Chang, Y.S. 2013. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08. J. Appl. Microbiol. 116, 542-553.
  15. Li, Q., Wang, X., Yin, G., Gai, Z., Tang, H., Ma, C., Deng, Z., and Xu, P. 2009. New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. Environ. Sci. Technol. 43, 8635-8642. https://doi.org/10.1021/es901991d
  16. Lyu, Y., Zheng, W., Zheng, T., and Tian, Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9, e101438. https://doi.org/10.1371/journal.pone.0101438
  17. Mandal, P. 2005. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J. Comp. Physiol. B. 175, 221-230. https://doi.org/10.1007/s00360-005-0483-3
  18. Mohammadi, M. and Sylvestre, M. 2005. Resolving the profile of metabolites generated during oxidation of dibenzofuran and chlorodibenzofurans by the biphenyl catabolic pathway enzymes. Chem. Biol. 7, 835-846.
  19. Monna, L., Omori, T., and Kodama, T. 1993. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl. Environ. Microbiol. 59, 285-289.
  20. Pollitt, F. 1999. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Regul. Toxicol. Pharm. 30, S63-S68. https://doi.org/10.1006/rtph.1999.1328
  21. Schecter, A., Birnbaum, L., Ryan, J., and Constable, J. 2006. Dioxins: An overview. Environ. Res. 101, 419-428. https://doi.org/10.1016/j.envres.2005.12.003
  22. Schmid, A., Rothe, B., Altenbuchner, J., Ludwig, W., and Engesser, K. 1997. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J. Bacteriol. 179, 53-62. https://doi.org/10.1128/jb.179.1.53-62.1997
  23. Sohn, J.H., Kwon, K.K., Kang, J.H., Jung, H.B., and Kim, S.J. 2004. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int. J. Syst. Evol. Microbiol. 54, 1483-1487.
  24. Van den Berg, M., De Jongh, J., Poiger, H., and Olson, J.R. 1994. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. Crit. Rev. Toxicol. 24, 1-74. https://doi.org/10.3109/10408449409017919
  25. WHO. 2010. Preventing disease through healthy environments. exposure to dioxins and dioxin-like substances: a major public health concern. World Health Organization. http://www.who.int/ipcs/features/dioxins.pdf..
  26. Wilkes, H., Wittich, R.M., Timmis, K.N., Fortnagel, P., and Francke, W. 1996. Degradation of chlor-inated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 62, 367-371.
  27. Wittich, R.M., Wilkes, H., Sinnwell, V., Francke, W., and Fortnagel, P. 1992. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58, 1005-1010.
  28. Xu, P., Yu, B., Li, F.L., Cai, X.F., and Ma, C.Q. 2006. Microbial degradation of sulfur, mitrogen and oxygen heterocycles. Trends Microbiol. 14, 398-405. https://doi.org/10.1016/j.tim.2006.07.002
  29. Yun, S.H., Choi, C.W., Lee, Y.G., Kwon, J., Leem, S.H., Chung, Y.H., Kahng, H.Y., Kim, S.J., Kwon, K.K., and Kim, S.I. 2014. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One 9, e90812. https://doi.org/10.1371/journal.pone.0090812
  30. Zhang, Y., Zhu, Y.X., Kwon, K.K., Park, J.H., and Kim, S.J. 2004. Novel method for determining pyrene biodegradation using synchronous fluorimetry. Chemosphere 55, 389-394. https://doi.org/10.1016/j.chemosphere.2003.11.005