Browse > Article
http://dx.doi.org/10.5478/MSL.2020.11.1.1

Evaluation of Recent Data Processing Strategies on Q-TOF LC/MS Based Untargeted Metabolomics  

Kaplan, Ozan (Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University)
Celebier, Mustafa (Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University)
Publication Information
Mass Spectrometry Letters / v.11, no.1, 2020 , pp. 1-5 More about this Journal
Abstract
In this study, some of the recently reported data processing strategies were evaluated and modified based on their capabilities and a brief workflow for data mining was redefined for Q-TOF LC-MS based untargeted metabolomics. Commercial pooled human plasma samples were used for this purpose. An ultrafiltration procedure was applied on sample preparation. Sample set was analyzed through Q-TOF LC/MS. A C18 column (Agilent Zorbax 1.8 µM, 50 × 2.1 mm) was used for chromatographic separation. Raw chromatograms were processed using XCMS - R programming language edition and Isotopologue Parameter Optimization (IPO) was used to optimize XCMS parameters. The raw XCMS table was processed using MS Excel to find reliable and reproducible peaks. Totally 1650 reliable and reproducible potential metabolite peaks were found based on the data processing procedures given in this paper. The redefined dataset was upload into MetaboAnalyst platform and the identified metabolites were matched with 86 metabolic pathways. Thus, two list were obtained and presented in this study as supplement files. The first list is to present the retention times and m/z values of detected metabolite peaks. The second list is the metabolic pathways related with the identified metabolites. The briefly described data processing strategies and dataset presented in this study could be beneficial for the researchers working on untargeted metabolomics for processing their data and validating their results.
Keywords
Metabolomics; metabolite profiling; Q-TOF LC/MS; XCMS; metabolic pathway analysis; data processing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dunn, W. B. Phys. biol. 2008, 5, 011001.   DOI
2 Zhou, B.; Xiao, J. F.; Tuli, L.; Ressom, H. W. Mol. BioSyst. 2012, 8, 470.   DOI
3 Fang, Z.-Z.; Gonzalez, F. J. Arch. Toxicol. 2014, 88, 1491.   DOI
4 Bajad, S.; Shulaev, V. LC-MS-based metabolomics. Metabolic Profiling: Springer: New York, 2011.
5 Alvarez-Sanchez, B.; Priego-Capote, F.; de Castro, M. L. TrAC- Trends Anal. Chem. 2010, 29, 111.   DOI
6 Alvarez-Sanchez, B.; Priego-Capote, F.; de Castro, M. L. TrAC- Trends Anal. Chem. 2010, 29, 120.   DOI
7 Patti, G. J. J. Sep. Sci. 2011, 34, 3460.   DOI
8 Myers, O. D.; Sumner, S. J.; Li, S.; Barnes, S.; Du, X. Anal. Chem. 2017, 89, 8689.   DOI
9 Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Peiber, T.; Magnes, C. BMC Bioinform. 2015, 16, 118.   DOI
10 Eliasson, M.; Rannar, S.; Madsen, R.; Donten, M. A.; Marsden-Edwards, E.; Moritz, T.; Shockcor, J. P.; Johansson, E.; Trygg, J. Anal. Chem. 2012, 84, 6869.   DOI
11 Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D. S.; Xia, J. Nucleic Acids Res. 2018, 46, W486.   DOI
12 Blazenovic I.; Kind T.; Torbasinovic, H.; Obrenovic, S.; Mehta, S. S.; Tsugawa, H.; Wermuth, T.; Schauer, N.; Jahn, M.; Biedendieck, R.; Jahn, D.; Fiehn, O. J. Cheminform. 2017, 9, 32.   DOI
13 Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C,; Karu, N.; Sayeeda, Z.; Lo, E.; Assempour, N.; Berjanskii, M.; Singhal, S.; Arndt, D.; Liang, Y.; Badran, H.; Grant, J.; Serra-Cayuela, A; Liu, Y,; Mandal, R.; Neveu, V.; Pon, A,; Knox, C.; Wilson, M.; Manach, C.; Scalbert, A. Nucleic Acids Res. 2017, 46, D608.   DOI
14 Holman, J. D.; Tabb, D. L.; Mallick, P. Curr. Protoc. Bioinformatics 2014, 46, 13.24.1   DOI
15 Tautenhahn, R.; Patti, G. J.; Rinehart, D.; Siuzdak, G. Anal. Chem. 2012, 84, 5035.   DOI
16 Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M. BMC Bioinform. 2007, 8, 93.   DOI