• 제목/요약/키워드: metabolically engineered

검색결과 33건 처리시간 0.027초

Metabolic Engineering of Deinococcus radiodurans for the Production of Phytoene

  • Jeong, Sun-Wook;Kang, Chang Keun;Choi, Yong Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1691-1699
    • /
    • 2018
  • A metabolically-engineered Deinococcus radiodurans R1 strain capable of producing phytoene, a colorless $C_{40}$ carotenoid and a promising antioxidant, has been developed. To make this base strain, first, the crtI gene encoding phytoene desaturase was deleted to block the conversion of phytoene to other carotenoids such as lycopene and ${\gamma}$-carotene. This engineered strain produced $0.413{\pm}0.023mg/l$ of phytoene from 10 g/l of fructose. Further enhanced production of phytoene up to $4.46{\pm}0.19mg/l$ was achieved by overexpressing the crtB gene encoding phytoene synthase and the dxs genes encoding 1-deoxy-$\text\tiny{D}$-xylulose-5-phosphate synthase gene, and by deleting the crtD gene. High cell-density culture of our final engineered strain allowed production of $10.3{\pm}0.85mg/l$ of phytoene with the yield and productivity of $1.04{\pm}0.05mg/g$ and $0.143{\pm}0.012mg/l/h$, respectively, from 10 g/l of fructose. Furthermore, the antioxidant potential of phytoene produced by the final engineered strain was confirmed by in vitro DPPH radical-scavenging assay.

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

A High-Yielding, Generic Fed-Batch Process for Recombinant Antibody Production of GS-Engineered Cell Lines

  • Fan, Li;Zhao, Liang;Sun, Yating;Kou, Tianci;Zhou, Yan;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1695-1702
    • /
    • 2009
  • An animal-component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of by-products (lactate and osmolality). The proportionalities of nutritional consumption were determined by direct analysis. The robust, metabolically responsive feeding strategy was based on the offline measurement of glucose. The fed-batch process was shown to perform equivalently in GS-CHO and GS-NS0 cultures. Compared with batch cultures, the fed-batch technology generated the greater increase in cell yields (5-fold) and final antibody concentrations (4-8-fold). The majority of the increase in final antibody concentration was a function of the increased cell density and the prolonged culture time. This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines.

대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산 (Production of 4-Hydroxybenzyl Alcohol Using Metabolically Engineered Corynebacterium glutamicum)

  • 김부연;정혜빈;이지영;페러 레니;푸완토 헨리 슈쿠르;이진호
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.506-514
    • /
    • 2020
  • 4-Hydroxybenzyl alcohol (4-HB alcohol)은 두통, 경련 행동, 현기증과 같은 신경계 질환에 유익한 효과를 나타내며 천마의 주요 생리활성 성분 중의 하나이다. 대사공학을 통해 4-hydroxybenzoate (4-HBA)를 생산하는 균주로부터 4-HB alcohol을 생산하는 재조합 Corynebacterium glutamicum을 개발하였다. 먼저 4-HBA를 생산하는 APS809로부터 염색체 내 NCgl2922 유전자에 Methanocaldococcus jannaschii 유래의 aroK 유전자를 삽입한 APS963을 개발하였다. 4-HBA의 카로복실 산을 4-hydroxybenzaldehyde (4-HB aldehyde)로의 환원을 촉매하는 Nocardia iowensis 유래의 car 유전자를 염색체에서 발현하는 균주를 개발하기 위해 NCgl1112 유전자 일부 단편에 car 유전자가 삽입된 GAS177를 개발하였다. 더 높은 농도의 4-HB alcohol을 생산하기 위해 4-HB alcohol을 aldehyde로 산화를 촉매하는데 관여하는 creG 유전자를 염색체상에서 제거된 GAS255를 개발하였다. 최종적으로 chorismate를 4-HBA로 전환하는 효소의 유전자 ubiCpr을 pcaHG에 삽입된 GAS355를 개발하였으며, 80 g/l 포도당을 함유한 삼각플라스크에서 발효하여 생산성을 평가한 결과, 2.3 g/l 4-HB alcohol이 생산되었으며 부산물로 0.32 g/l 4-HBA, 0.3 g/l 4-HB aldehyde가 축적되었다.

Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae

  • Jung, Joon-Young;Yun, Hyun-Shik;Lee, Jin-Won;Oh, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.846-853
    • /
    • 2011
  • Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.

Enhanced Production of Astaxanthin by Metabolically Engineered Non-mevalonate Pathway in Escherichia coli

  • Jeong, Tae Hyug;Cho, Youn Su;Choi, Seong-Seok;Kim, Gun-Do;Lim, Han Kyu
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.114-119
    • /
    • 2018
  • Astaxanthin is one of the major carotenoids used in pigment has a great economical value in pharmaceutical markets, feeding, nutraceutical and food industries. This study was to increase the production of astaxanthin by co-expression with transformed Escherichia coli using six genes involved in the non-mevalonate pathway. Involved in the non-mevalonate biosynthetic pathway of the strain Kocuria gwangalliensis were cloned dxs, ispC, ispD, ispE, ispF, ispG, ispH and idi genes in order to increase astaxanthin production from the transformed E. coli. And co-expression with the genes to compared the amount of astaxanthin production. This engineered E. coli, containing both the non-mevalonate pathway gene and the astaxanthin biosynthesis gene cluster, produced astaxanthin at $1,100{\mu}g/g$ DCW (dry cell weight), resulting in approximately three times the production of astaxanthin.

Synthesis of Methylated Anthranilate Derivatives Using Engineered Strains of Escherichia coli

  • Lee, Hye Lim;Kim, Song-Yi;Kim, Eun Ji;Han, Da Ye;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.839-844
    • /
    • 2019
  • Anthranilate derivatives have been used as flavoring and fragrant agents for a long time. Recently, these compounds are gaining attention due to new biological functions including antinociceptive and analgesic activities. Three anthranilate derivatives, N-methylanthranilate, methyl anthranilate, and methyl N-methylanthranilate were synthesized using metabolically engineered stains of Escherichia coli. NMT encoding N-methyltransferase from Ruta graveolens, AMAT encoding anthraniloyl-coenzyme A (CoA):methanol acyltransferase from Vitis labrusca, and pqsA encoding anthranilate coenzyme A ligase from Pseudomonas aeruginosa were cloned and E. coli strains harboring these genes were used to synthesize the three desired compounds. E. coli mutants (metJ, trpD, tyrR mutants), which provide more anthranilate and/or S-adenosyl methionine, were used to increase the production of the synthesized compounds. MS/MS analysis was used to determine the structure of the products. Approximately, $185.3{\mu}M$ N-methylanthranilate and $95.2{\mu}M$ methyl N-methylanthranilate were synthesized. This is the first report about the synthesis of anthranilate derivatives in E. coli.

Production and characterization of ultra-high-molecular weight poly(3-hydroxybutyrate) by recombinant Escherichia coli

  • 박종필;박시재;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.731-734
    • /
    • 2001
  • An efficient fermentation strategy for the high level production of ultra-high-molecular weight poly(3-hdyroxybutyrate) (PHB) was developed. Although the cell and PHA concentrations obtained by flask cultures at different initial pH (6.0 or 6.9) were almost same level, the molecular mass of PHB produced were quite different along with the initial pH. When a recombinant Escherichia coli XL1-Blue harboring pJC2 containing the Alcaligenes latus PHB biosynthesis genes was cultivated in flask culture (pH 6.0), the PHB having a very high molecular weight of 22 MDa could be produced while only below 1 MDa at initial pH 6.9. The ultra-high-molecular weight PHB could be synthesized to high concentration of 89.8 g/L resulting in the PHB productivity of 2.07 g/L-h by simple fed-batch culture. In this study, we report that PHB having various molecular mass can be produced by employing metabolically engineered E. coli strains harboring the plasmids of different copy numbers containing the A. latus phbCAB genes.

  • PDF

Effect of redox potential on the production of succinic acid by metabolically engineered Escherichia coli

  • 홍순호;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.665-668
    • /
    • 2000
  • Recombinant Escherichia coli NZN111 ($F-{\Delta}pfl::Cam$ ldhA::Kan) harboring pTrcML, a plasmid containing the E. coli malic enzyme gene, produced considerable amount of malic acid along with the desired product succinic acid. This seemed to be due to the unmatched redox states between glucose and succinic acid. Therefore, a more reduced carbon substrate sorbitol was examined for the possibility of matching the potential during succinic acid production. When NZN111 (pTrcML) was cultured in LB medium containing 20 g/L sorbitol under $CO_2$ atmosphere, 10 g/L of succinic acid was produced. The apparent yield of succinic acid was 1.1 g succinic acid per g sorbitol, which is 85% of the maximum theoretical yield.

  • PDF

Thymidine Production by Corynebacterium ammoniagenes Mutants

  • Song, Kyung-Hwa;Kwon, Do-Young;Kim, Sang-Yong;Lee, Jung-Kul;Hyun, Hyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.477-483
    • /
    • 2005
  • Corynebacterium ammoniagenes ATCC 6872, which does not accumulate pyrimidine nucleoside or nucleotide, was metabolically engineered to secrete a large amount of thymidine. Characteristics of 5-fluorouracil resistance ($FU^r$), hydroxyurea resistance ($HU^r$), trimethoprim resistance ($TM^r$), thymidylate phosphorylase deficiency ($deoA^-$), inosine auxotrophy ($ino^-$), 5-fluorocytosine resistance ($FC^r$), thymidine kinase deficiency, and thymidine resistance ($thym^r$) were successively introduced into mutant strains KR3 and DY5T9-5, and shake-flask cultures were able to accumulate 408.1 mg/l and 428.2 mg/l of thymidine, respectively, as a major product. The mutant strains did not accumulate thymine at all and accumulated less than 10 mg/l of other pyrimidine nucleosides, such as cytosine, cytidine, and deoxycytidine, as byproducts.