Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08052

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains  

Poblete-Castro, Ignacio (Microbial Drugs Group, Helmholtz Centre for Infection Research)
Rodriguez, Andre Luis (Institute of Biochemical Engineering, Technische Universitat Braunschweig)
Lam, Carolyn Ming Chi (Systems and Synthetic Biology, Wageningen University)
Kessler, Wolfgang (Microbial Drugs Group, Helmholtz Centre for Infection Research)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.1, 2014 , pp. 59-69 More about this Journal
Abstract
One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.
Keywords
Dissolved-oxygen-stat; fed-batch process; glucose; medium-chain-length polyhydroxyalkanoates; metabolic engineering; Pseudomonas putida;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Poblete-Castro I, Escapa I, Jager C, Puchalka J, Lam CMC, Schomburg D, et al. 2012. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb. Cell Factor. 11:34.   DOI   ScienceOn
2 Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, et al. 2008. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput. Biol. 4: e1000210.   DOI   ScienceOn
3 Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I. 2011. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater. Sci. Eng. R Reports 72: 29-47.   DOI   ScienceOn
4 Simon-Colin C, Raguenes G, Crassous P, Moppert X, Guezennec J. 2008. A novel mcl-PHA produced on coprah oil by Pseudomonas guezennei biovar. tikehau, isolated from a kopara mat of French Polynesia. Int. J. Biol. Macromolec. 43: 176-181.   DOI   ScienceOn
5 Solaiman DY, Ashby R, Hotchkiss Jr A, Foglia T. 2006. Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol. Lett. 28: 157-162.   DOI   ScienceOn
6 Sun Z, Ramsay J, Guay M, Ramsay B. 2006. Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 71: 423-431.   DOI
7 Lee H-J, Choi MH, Kim T-U, Yoon SC. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963-4974.   DOI   ScienceOn
8 Lee SY, Wong HH , Choi J I, L ee SH , Lee SC, H an CS. 2000. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470.   DOI   ScienceOn
9 Liu Q, Luo G, Zhou XR, Chen GQ. 2011. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by $\beta$-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13: 11-17.   DOI   ScienceOn
10 Mozejko J, Ciesielski S. 2013. Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J. Biosci. Bioeng. 116: 485-492.   DOI   ScienceOn
11 Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, et al. 2013. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animalderived waste. J. Biotechnol. 165: 45-51.   DOI   ScienceOn
12 Poblete-Castro I, Binger D, Rodrigues A, Becker J, Martins dos Santos VAP, Wittmann C. 2013. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab. Eng. 15: 113-123.   DOI   ScienceOn
13 Muller C, Petruschka L, Cuypers H, Burchhardt G, and Herrmann H. 1996. Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J. Bacteriol. 178: 2030-2036.   DOI
14 Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ. 2007. Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8: 2504-2511.   DOI   ScienceOn
15 Poblete-Castro I, Becker J, Dohnt K, dos Santos V, Wittmann C. 2012. Industrial biotechnology of Pseudomonas putida and related species. Appl. Microbiol. Biotechnol. 93: 2279-2290.   DOI   ScienceOn
16 Chen G-Q. 2009. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38: 2434- 2446.   DOI   ScienceOn
17 del Castillo T, Ramos JL, RodrA-guez-Herva JJ, Fuhrer T, Sauer U, Duque E. 2007. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J. Bacteriol. 189: 5142-5152.   DOI   ScienceOn
18 Follonier S, Panke S, Zinn M. 2011. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Microb. Cell Factor. 10: 25.   DOI   ScienceOn
19 Frazzetto G. 2003. White biotechnology. EMBO Rep. 4: 835-837.   DOI   ScienceOn
20 Fujita Y, Matsuoka H, Hirooka K. 2007. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 66: 829-839.   DOI   ScienceOn
21 Hartmann R, Hany R, Geiger T, Egli T, Witholt B, Zinn M. 2004. Tailored biosynthesis of olefinic medium-chain-length poly[(r)-3-hydroxyalkanoates] in Pseudomonas putida GPo1 with improved thermal properties. Macromolecules 37: 6780- 6785.   DOI
22 Koller M, Atlic A, Dias M, Reiterer A, Braunegg G. 2010. Microbial PHA production from waste raw materials, p. 85-119 Plastics from Bacteria, Springer Berlin Heidelberg.
23 Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58: 536-544.
24 Kim GJ, Lee IY, Yoon SC, Shin YC, Park YH. 1997. Enhanced yield and a high production of medium-chainlength poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 20: 500-505.   DOI   ScienceOn
25 Klinke S, Dauner M, Scott G, Kessler B, Witholt B. 2000. Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas putida. Appl. Environ. Microbiol. 66: 909-913.   DOI
26 Sun Z, Ramsay JA, Guay M, Ramsay B. 2007. Increasing the yield of mcl-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J. Biotechnol. 132: 280-282.   DOI   ScienceOn
27 Sun Z, Ramsay JA, Guay M, Ramsay BA. 2007. Carbonlimited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 74: 69-77.   DOI   ScienceOn
28 Sun Z, Ramsay JA, Guay M, Ramsay BA. 2007. Fermentation process development for the production of medium-chainlength poly-3-hydroxyalkanoates. Appl. Microbiol. Biotechnol. 75: 475-485.   DOI
29 van Duuren JBJH. 2011. Optimization of Pseudomonas putida KT2440 as Host for the Production of Cis, Cis-muconate from Benzoate. Wageningen University.
30 Wang Q, Tappel RC, Zhu C, Nomura CT. 2012. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl. Environ. Microbiol. 78: 519-527.   DOI
31 Sun Z, Ramsay J, Guay M, Ramsay B. 2009. Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J. Biotechnol. 143: 262-267.   DOI   ScienceOn
32 Witholt B, Kessler B. 1999. Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr. Opin. Biotechnol. 10: 279-285.   DOI   ScienceOn
33 Diniz S, Taciro M, Cabrera Gomez JGr, da Cruz Pradella JG. 2004. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl. Biochem. Biotechnol. 119: 51-70.   DOI   ScienceOn
34 Escapa I, Morales V, Martino V, Pollet E, Averous L, Garcia J, Prieto M. 2011. Disruption of B-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl. Microbiol. Biotechnol. 89: 1583-1598.   DOI
35 Smyth PF, Clarke PH. 1975. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J. Gen. Microbiol. 90: 81-90.   DOI
36 Wang B, Sharma-Shivappa R, Olson J, Khan S. 2012. Upstream process optimization of polyhydroxybutyrate (PHB) by Alcaligenes latus using two-stage batch and fed-batch fermentation strategies. Bioprocess Biosyst. Eng. 35: 1591- 1602.   DOI   ScienceOn