• Title/Summary/Keyword: mesoporous surface

Search Result 209, Processing Time 0.033 seconds

Fabrication of Mesoporous Hollow TiO2 Microcapsules for Application as a DNA Separator

  • Jeon, Sang Gweon;Yang, Jin Young;Park, Keun Woo;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3583-3589
    • /
    • 2014
  • This study evaluated a simple and useful route to the synthesis of mesoporous $TiO_2$ microcapsules with a hollow macro-core structure. A hydrophilic precursor sol containing the surfactants in the hydrophobic solvents was deposited on PMMA polymer surfaces modified by non-thermal plasma to produce mesoporous shells after calcination. The surface of the PMMA polymer spheres was coated with $NH_4F$ and CTAB to control the interfacial properties and promote the subsequent deposition of inorganic sols. These hollow type mesoporous $TiO_2$ microcapsules could be applied as an efficient substrate for the immobilization of DNA oligonucleotides.

Spray pyrolysis synthesis of mesoporous TiO2 microspheres and their post modification for improved photocatalytic activity

  • Choi, Jaehyung;Yoo, Kye Sang;Kim, Jinsoo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2480-2486
    • /
    • 2018
  • Mesoporous $TiO_2$ microspheres were prepared by spray pyrolysis for photocatalysis. Post modification of $TiO_2$ by heat treatment was performed to optimize its photocatalytic performance. First, spherical $TiO_2$ particles with mesoporous structure were synthesized at pyrolysis temperatures of 500, 600, and $700^{\circ}C$. After characterization by XRD, SEM, and $N_2$ adsorption, a sample prepared at $500^{\circ}C$ was found to possess desirable properties for photocatalytic performance through post-modification. In methylene blue degradation, mesoporous $TiO_2$ microspheres synthesized at $500^{\circ}C$ outperformed other microspheres. Furthermore, samples obtained by spray pyrolysis at $500^{\circ}C$ were calcined at various temperatures as a post-modification process. The sample calcined at $350^{\circ}C$ showed improved photocatalytic activity due to optimal anatase crystallinity and surface area.

Effect of pore structure on electrochemical performance of EDLC (EDLC의 전기화학적 성능에 대한 메조기공 구조의 효과)

  • Lee, Myung-Suk;Shin, Yun-Sung;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.310-317
    • /
    • 2010
  • The electrochemical properties of electric double layer capacitor(EDLC) was studied by controlling pore size distribution and specific surface area of the activated carbon fiber(ACF). The mesoporous ACF, which was prepared by the iron exchange method, showed the tendency of increasing average pore size and decreasing total surface area. The mesoporous ACF (surface area = 2225 $m^2$/g, pore size=1.93 nm) showed increased mesopore(pore size=1~3nm) volume from 0.055 cc/g to 0.408 cc/g compared to its raw ACF. The charging capacity of the EDLC which uses the prepared mesoporous ACF also increased from 0.39 F/$cm^2$ to 0.55 F/$cm^2$. From these results, it can be known that the electrochemical properties of EDLC are mainly dependent on the specific surface area, but above the surface area 2200 $m^2$/g, it is the mesopore volume that affects the performance of the capacitor considerably. Because the increased mesopore volume results in a decreased ion mobility resistance, the charge capacitance is enhanced.

Synthesis of Mesoporous Transition Metal Carbon Using the Mesoporous Silica (메조포러스실리카를 이용한 메조포러스 전이금속체 합성)

  • Han, Seung-Dong;Jeong, Ui-Min;Lee, Joo-Bo;Peng, Mei Mei;Kim, Dae-Kyung;Jang, Hyun-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1915-1922
    • /
    • 2012
  • In this study, synthesis of mesoporous silica such as, SBA-15, MCM-41, MCM-48, KIT-6 according to various experimental conditions. The CMK(Carbon Mesoporous Korea) was synthsized by various mesoporous silica. Finally, the mesoporous transition metal structure synthesized using CMK structure. Nitrogen adsorption/ desorption, SEM, low angle X-ray diffraction were carried for analysis of each sample. The optimum synthesis condition of mesoporous transition metal structure derived from characteristic analysis. The SBA-15 is best precursor for synthesis of mesoporous transition metal structure. The surface area of copper mesorporous structure from CMK(SBA-15) is $225m^2/g$, pore diameter is 2.91nm by BET analysis.

Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties

  • Kim, Jeong-Nam;Choi, Min-Kee;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.413-416
    • /
    • 2008
  • A synthesis route to ordered mesoporous carbons with controllable nitrogen content has been developed for high-performance EDLC electrodes. Nitrogen-doped ordered mesoporous carbons (denoted as NMC) were prepared by carbonizing a mixture of two different carbon sources within the mesoporous silica designated by KIT-6. Furfuryl alcohol was used as a primary carbon precursor, and melamine as a nitrogen dopant. This synthesis procedure gave cubic Ia3d mesoporous carbons containing nitrogen as much as 13%. The carbon exhibited a narrow pore size distribution centered at 3-4 nm with large pore volume (0.6-1 cm3 g-1) and high specific BET surface area (700-1000 m2 g-1). Electrochemical behaviors of the NMC samples with various N-contents were investigated by a two-electrode measurement system at aqueous solutions. At low current density, the NMC exhibited markedly increasing capacitance due to the increase in the nitrogen content. This result could be attributed to the enhanced surface affinity between carbon electrode and electrolyte ions due to the hydrophilic nitrogen functional groups. At high current density conditions, the NMC samples exhibited decreasing specific capacitance against the increase in the nitrogen content. The loss of the capacitance with the N-content may be explained by high electric resistance which causes a significant IR drop at high current densities. The present results indicate that the optimal nitrogen content is required for achieving high power and high energy density simultaneously.

Reduction of Nitrate-nigrogen by Zero-valent Iron Adhered in Mesoporous Silicas (메조기공 실리카에 부착된 영가철을 이용한 질산성 질소의 환원)

  • Yeon, Kyeong-Ho;Lee, Seunghak;Lee, Kwanyong;Park, Yong-Min;Kang, Sang-Yoon;Lee, Jae-Won;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.139-147
    • /
    • 2007
  • For environmental remediation of a contaminated groundwater plume, the use of zero-valent metal represents one of the latest innovative technologies. In this study, the effects of denitrification by zero-valent iron adsorbed in mesoporous silicas have been studied for groundwater contaminant degradation. The mesoporous silica was functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands and the zero-valent iron precipitated in the mesopore of granular silica was made by $FeCl_2$ and $NaBH_4$. Hydrogen was exchanged with $Fe^{2+}$ ions in the granular silicas. And then the ions were reduced by sodium borohydride in the mesoporous silicas. The surface area of the silica determined via the BET method ranged from 858 to $1275m^2/g$. The reductive reaction of nitrate-nitrogen indicated that the degradation of nitrate-nitrogen appeared to be pseudo first-order with the observed reaction rate constant kobs ($0.1619h^{-1}$) and to be directly proportional to the specific surface area. Therefore, the mesoporous silica with nano zero-valent iron proposed as a novel treatment strategy for contaminated groundwater was successfully implemented herein for the removal of nitrate-nitrogen.

Study on CMPO (Carbamoylphosphate) derivative functionalized ordered mesoporous silicates for selective removal of lanthanide (희토류 원소의 분리를 위한 표면 개질 된 메조 다공성 실리케이트의 개발에 관한 연구)

  • Kwon, Bob Jin;Jung, Hyun;Kim, Jong Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.291-298
    • /
    • 2012
  • Carbamoylphosphate (CMPO) [CMPO analogue; 2-(diphenylphosphoryl)-N-(3-(triethoxysilyl)propyl)acetamide]silane, as a functional self-assembled molecules, grafted mesoporous silicates were prepared by simple hydrolysis and condensation reaction. Pore sized tailored mesoporous silicates such as MCM-41, SBA-15, or amorphous silica nanoparticles were adopted as host materials. The surface area of ordered mesoporous silicates was ranged from 680 $m^2/g$ to 1310 $m^2/g$ with different pore diameters that estimated to be ca. 2.3~9.1 nm by BJH method. Among the OMMs host materials, SBA-15(II) has higher loading ratio (~35 wt%) of CMPO derivative than other OMMs. Accessibility to CMPO silane functional groups in the surface of mesoporous silicas was studied by lanthanide ions sorption experiments. All of the CMPO modified OMMs favors the smaller Eu(III) and Nd(III) cations than La(III) for relative larger ionic radius.

Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells (탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향)

  • Kim, Byung-Ju;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Fuctionalization of SBA-16 Mesoporous Materials with Cobalt(III) Cage Amine Complex

  • Han, Sang-Cheol;Sujandi, Sujandi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1381-1384
    • /
    • 2005
  • Surface modification of tridimensional cubic mesoporous silica, SBA-16, was investigated with pendant arm functionalized cobalt diaminosarcophagine (diAMsar) cage complex which covalently grafted onto the silica surface through the silication with sylanol group. The spectroscopic results showed that the mesoporous structure was preserved under the $[Co(diAMsar)]^{3+}$ grafting reaction condition. Successful grafting prevented the cobalt diAMsar cage from leaching out from the SBA-16 support.

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves

  • Cho, Ki-Sook;Kim, Byung-Joo;Kim, Seok;Kim, Sung-Hyun;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.100-103
    • /
    • 2010
  • In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.