Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.2.413

Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties  

Kim, Jeong-Nam (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science BK21), Korea Advanced Institute of Science and Technology)
Choi, Min-Kee (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science BK21), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea)
Ryoo, Ryong (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science BK21), Korea Advanced Institute of Science and Technology)
Publication Information
Abstract
A synthesis route to ordered mesoporous carbons with controllable nitrogen content has been developed for high-performance EDLC electrodes. Nitrogen-doped ordered mesoporous carbons (denoted as NMC) were prepared by carbonizing a mixture of two different carbon sources within the mesoporous silica designated by KIT-6. Furfuryl alcohol was used as a primary carbon precursor, and melamine as a nitrogen dopant. This synthesis procedure gave cubic Ia3d mesoporous carbons containing nitrogen as much as 13%. The carbon exhibited a narrow pore size distribution centered at 3-4 nm with large pore volume (0.6-1 cm3 g-1) and high specific BET surface area (700-1000 m2 g-1). Electrochemical behaviors of the NMC samples with various N-contents were investigated by a two-electrode measurement system at aqueous solutions. At low current density, the NMC exhibited markedly increasing capacitance due to the increase in the nitrogen content. This result could be attributed to the enhanced surface affinity between carbon electrode and electrolyte ions due to the hydrophilic nitrogen functional groups. At high current density conditions, the NMC samples exhibited decreasing specific capacitance against the increase in the nitrogen content. The loss of the capacitance with the N-content may be explained by high electric resistance which causes a significant IR drop at high current densities. The present results indicate that the optimal nitrogen content is required for achieving high power and high energy density simultaneously.
Keywords
Nitrogen doping; Mesoporous carbon; EDLC
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 15
연도 인용수 순위
1 Ryoo, R.; Joo, S. H. Stud. Surf. Sci. Catal. 2004, 148, 241   DOI
2 Yoon, S.; Lee, J. W.; Hyeon, T.; Oh, S. M. J. Electrochem. Soc. 2000, 147, 2507   DOI   ScienceOn
3 Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9, 1774   DOI   ScienceOn
4 Endo, M.; Takeda, T.; Kim, Y. J.; Koshiba, K.; Ishii, K. Carbon Science 2001, 1, 117
5 Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937   DOI   ScienceOn
6 Lota, G.; Grzyb, B.; Machnikowska, H.; Machnikowski, J.; Frackowiak, E. Chem. Phys. Lett. 2005, 404, 53   DOI   ScienceOn
7 Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Chem. Mater. 2005, 17, 5187   DOI   ScienceOn
8 Derradji, N. E.; Mahdjoubi, M. L.; Belkhir, H.; Mumumbila, N.; Angleraud, B.; Tessier, P. Y. Thin Solid Films 2005, 482, 258   DOI   ScienceOn
9 Vix-Guterl, C.; Saadallah, S.; Jurewicz, K.; Frackowiak, E.; Reda, M.; Parmentier, J.; Patarin, J.; Beguin, F. Materials Science and Engineering B 2004, 108, 148   DOI   ScienceOn
10 Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2006, 44, 216   DOI   ScienceOn
11 Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer-Plenum Press: New York, 1999
12 Arico, A. S.; Bruce, P.; Tarascon, J. M.; Van-Schalkwijk, W. Nature Mater. 2005, 4, 366   DOI   ScienceOn
13 Kotz, R.; Carlen, M. Electrochimica Acta 2000, 45, 2483   DOI   ScienceOn
14 Frackowiak, E.; Lota, G.; Machnikowski, J.; Vix-Guterl, C.; Beguin, F. Electrochimica Acta 2006, 51, 2209   DOI   ScienceOn
15 Li, W.; Chen, D.; Li, Z.; Shi, Y.; Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z. Electrochem. Commun. 2007, 9, 569   DOI   ScienceOn
16 An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Adv. Funct. Mater. 2001, 11, 387   DOI   ScienceOn
17 Hulicova, D.; Kodama, M.; Hatori, H. Chem. Mater. 2006, 18, 2318   DOI   ScienceOn
18 Beguin, F.; Szostak, K.; Lota, G.; Frackowiak, E. Adv. Mater. 2005, 17, 2380   DOI   ScienceOn
19 Jurewicz, K.; Babel, K.; Ziolkowski, A.; Wachowska, H. J. Phys. Chem. Solids 2004, 65, 269   DOI   ScienceOn
20 Raymundo-Pinero, E.; Leroux, F.; Beguin, F. Adv. Mater. 2006, 18, 1877   DOI   ScienceOn
21 Gierszal, K. P.; Kim, T.-W.; Ryoo, R.; Jaroniec, M. J. Phys. Chem. B 2005, 109, 23263   DOI   ScienceOn
22 Smits, F. M. Bell System Tech. J. 1958, 711
23 Xia, Y.; Mokaya, R. Adv. Mater. 2004, 16, 1553   DOI   ScienceOn
24 Lu, A. H.; Kiefer, A.; Schmidt, W.; Schuth, F. Chem. Mater. 2004, 16, 100   DOI   ScienceOn
25 Alvarez, S.; Blanco-Lopez, M. C.; Miranda-Ordieres, A. J.; Fuertes, A. B.; Centeno, T. A. Carbon 2005, 43, 855   DOI   ScienceOn