• Title/Summary/Keyword: mesocosm

Search Result 72, Processing Time 0.032 seconds

Changes in Benthic Environments in Polluted Coastal Sediment Using Granulated Coal Ash as a Cover (석탄회 조립물의 피복에 따른 연안 오염퇴적물의 저서환경 변화)

  • Jeong, Ilwon;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.67-73
    • /
    • 2019
  • We carried out basic research to evaluate covering material for improving and managing contaminated benthic environments in coastal areas. Changes in nutrient concentration such as phosphate, hydrogen sulfide of contaminated sediment, and pH, Oxidation Reduction Potential (ORP) were investigated through mesocosm experiments for 6 months by covering contaminated sediment with granulated coal ash. Calcium oxide eluted from the granulated coal ash was confirmed to neutralize acidified sediment by increasing pH through hydrolysis. Also, calcium oxide and silica eluted from the granulated coal ash adsorbed and precipitated with phosphate in the sediment. The concentration of phosphate in the sediment investigated decreased by ca. 84.31 %. Similarly, the concentration of hydrogen sulfide decreased by 133.5 mg/L in one month. The hydrogen sulfide is considered to have reacted with substances such as manganese oxide which were eluted from the granulated coal ash and precipitated. Also, it was concluded that the hydrogen sulfide was reduced since anaerobic conditions in the sediment weakened. According to the results of these mesocosm experiments, granulated coal ash was found to be effective to remediate and manage benthic environments by covering the surface layer of sediment.

Effects of wintering waterfowl's feces on nutrient dynamics of paddy fields and rice growth

  • Lee, Gwang Moon;Kim, Heung-Tae;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.291-299
    • /
    • 2012
  • This experiment was conducted to investigate the effects of the addition of wintering waterfowl's feces prior to planting rice on nutrient dynamics, rice growth, and decomposition of rice straws in a controlled mesocosm. Waterfowl's feces and rice straws were placed on paddy soils in a mesocosm and the water level maintained at 5 cm. The amounts of supplied feces were 0 (control), 222, and 444 g/$m^2$. While the addition of feces showed no immediate effects, nutrients in the surface water increased in the month following treatment. Nutrients increased to a greater degree in the treatments with more feces added. Simultaneously, the decomposition of rice straws was promoted, indicating that more nutrients would be made available over time. The rice showed high productivity in the period during which nutrient level was increased, when rice needs more nutrients for the tillering stage. Therefore, the wintering waterfowl's feces could be associated with increased productivity during the growing season of rice through promoting nutrient supply and rapid decomposition of rice residue.

Monitoring of Water Quality in Agricultural Reservoirs According to Trapa japonica Death Effect (농업용저수지에서 마름의 사멸에 따른 수질변화 관찰)

  • Choi, Eunhee;Yoo, Suna;Kim, Hyungjoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.148-151
    • /
    • 2016
  • BACKGROUND: There are few studies on the impacts of hydrophytes on water quality, so there is a need to research the effects of death of hydrophytes on the worsening of water quality. This study aimed to monitor the effects of Trapa japonica death on reservoir water quality.METHODS AND RESULTS: T.japonica shows the life cycle that highest growth in summer and rapid death in fall decomposing their body in general. T.japonica contains comparatively large portion of nutrients and minerals. Through the field survey using Mesocosm to identify the effects of excessive population of T.japonica on water quality, the water quality of plots planted T.japonica is gradually worse compared with the control plot. And the result of Wilcoxon-test also shows that the negative effect of T.japonica on water quality with significant (p<0.05).CONCLUSION: It is necessary to control the population growth of T.japonica in order to prevention of water pollution in fall.

Effects of light and nutrient on flower formation and vegetative growth of Viola collina

  • Park, Hyekyung;Son, Ga-yeon;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.243-249
    • /
    • 2022
  • Background: Mixed breeding herb Viola collina Besser, which produces both chasmogamous and cleistogamous flower, has limited habitats under closed canopy and short and early flowering timing, making it relatively more vulnerable to climate change. To better understand the effect of light and nutrient on the flower formation and vegetative growth of V. collina, a mesocosm experiment was conducted. Two-by-two factorial treatments of two light conditions (100% and 60% of natural light) and two fertilizer treatment conditions (fertilized and not fertilized) were applied in the mesocosm experiment. Results: The number of flowers, including chamogamous and cleistogamous flowers, was highest (5.65/pot) under 60% light and fertilized condition and lowest (1.41/pot) under 100% light and not-fertilized condition. However, above ground vegetative growth was highest (2.89 g/pot) under 100% light and fertilized condition and lowest (2.38 g/pot) under 60% light and not-fertilized condition. Above ground biomass to belowground biomass ratio was highest (1.50) under 60% light and fertilized condition and lowest (1.26) under 100% light and fertilized condition. Conclusions: This study showed that high light and nutrient are responsible for the vegetative growth, though the effect of fertilizer was reduced due to allocation and retainment of nutrients. In addition, the low light is necessary to make flowers, especially chasmogamous flowers.

Response of Size-fractionated Phytoplankton to Humic Acids in the Seawater of Yeongsan River Estuary (영산강 하구에서 부식산이 식물플랑크톤에 미치는 영향)

  • Sehee Kim;Yongsik Sin
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.113-123
    • /
    • 2023
  • Humic substances are refractory organic compounds that are relatively low in biological activity but known to stimulate phytoplankton growth in estuarine and marine environments. The effect of humic substances on phytoplankton growth was investigated in the seawater zone of the Yeongsan River estuary where an episodic anthropogenic freshwater is discharged, affecting its water properties directly. Water samples and data of water properties were collected at three stations (Sts. A-C) along the channel of the seawater zone in February, May, August and November, 2009. The collected water samples were incubated after humic acids (HA) were added in mesocosm experiments. Phytoplankton (chlorophyll-a) were fractionated into net- (> 20 ㎛) and nano-size (< 20 ㎛) to examine the response of phytoplankton according to size. Their response to HA treatment was assessed by repeated measures analysis of variance (RM-ANOVA). The experiments showed that phytoplankton biomass (chlorophyll-a) significantly increased after HA were added at the stations near the sea dike. Especially, nano-sized chlorophyll-a concentrations increased significantly throughout the seasons. This indicates that understanding the behavior of refractory organic matters such as humic substances is required to better manage altered estuarine ecosystems including the Yeongsan River estuary which are affected by episodic discharge of freshwater from sea dikes.

Effects of an Artificial Habitat Creation of Menyanthes trifoliata L. Using Planting Module (식재모듈을 활용한 조름나물(Menyanthes trifoliata L.) 인공서식지 조성의 효과)

  • Heo, Jinok;Kim, Heung-Tae;Kim, Cheol Min;Bae, Yeon Jae;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Habitat creation for endangered species Menyanthes trifoliata L. using planting module represents a habitat type such as the rhizome grows horizontally to open water at the margin of the lake. The objectives of this mesocosm experiment are habitat creation with easy construction and low management effort, and to investigate the potential of providing a habitat for aquatic macroinvertebrates. Planting modules had three different substrates of bed soil, perlite and K-SOIL (artificial lightweight soil using bottom ash). These modules were established in two different size of the tub($1170{\times}2250{\times}300mm^3$, $900{\times}1360{\times}190mm^3$). According to the monitoring results, number of leaves and coverage of M. trifoliata showed significant difference with substrate and tub size. The number of leaves showed similar growth responses in bed soil (mean 22.979) and K-SOIL (mean 28.042) substrates but growth was poor in perlite substrate (mean 1.667). The number of leaves in the large tub was more than small tub (p=0.015). Similar responses were obtained with the coverage, the length of rhizome and the number of rhizome in M. trifoliata. A total of 21 taxa of aquatic macroinvertebrates including 1,145 individuals was found in the mesocosm. The Shannon diversity index and colonization index in the mesocosm were similar to the previous studies. These results suggest that the experimental mesocosm could provide sufficient habitats for aquatic macroinvertebrates. If planting modules use bed soil or K-SOIL by planting substrate, establish that taking into account open water surfaces for M. trifoliata growth and manage about 30cm of water depth control, then habitat creation for M. trifoilata will be successful.

Control of Cyanobacteria (Microcystis aeruginosa) Blooms by Floating Aquatic Plant (Iris pseudoacorus): an in situ Mesocosm Experiment Using Stable ($^{13}C$, $^{15}N$) Isotope Tracers ($^{13}C$, $^{15}N$ 추적자 실험을 통한 부유 수생식물(Iris pseudoacorus)의 Cyanobacteria (Microcystis aeruginosa) 성장억제능력 평가)

  • Kim, Min-Seob;Lee, Yeon-Jung;Kim, Baik-Ho;Hwang, Soon-Jin;An, Kwang-Guk;Park, Sun-Koo;Ume, Han-Yong;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.280-291
    • /
    • 2011
  • Bottom-up approaches to control of Microcystis aeruginosa blooms were comparatively investigated through an in situ mesocosm experiment using aquatic plants (Iris pseudoacorus). In the mesocosm experiments, floating I. pseudoacorus, seemed to be effective in controlling massive M. aeruginosa blooms in an agricultural reservoir, exhibiting a close coupling with temporal variations in Chl-a and DO concentration. Shading by floating I. pseudoacorus resulted in a reduced phytoplankton abundance inhibiting light energy availability. Moreover, I. pseudoacorus may suppress phytoplankton growth through the excretion of chemical substances, likes a allelopathy, that inhibit phytoplankton photosynthetic activity. The $^{15}N$ atom % of I. pseudoacorus showed higher values than POM, suggesting that I. pseudoacorus assimilates DIN predominantly compared to phytoplankton, which was mostly M. aeruginosa. This result strongly suggests that the M. aeruginosa bloom should be regulated by aquatic plants, like I. pseudoacorus, this approach can affect zooplankton composition. This is the first study that has used stable isotope tracers to evaluate the biomanipulation efficiency through floating I. pseudoacorus.

Microcosm Studies of Nanomaterials in Water and Soil Ecosystems (수생태 및 토양생태계에서 나노물질의 마이크로코즘 연구)

  • Yoon, Sung-Ji;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2012
  • The current growth of nano-industries has resulted in released nanoparticles entering into water and soil ecosystems via various direct or indirect routes. Physicochemical properties of nanoparticles differ from bulk materials, and nanomaterials influence the fates of nanoparticles and the interactions of living or non-living things in the environment. Microcosm analysis is a research methodology for revealing natural phenomena by mimicking part of an ecosystem under controlled conditions. Microcosm study allows for the integrated analysis of toxic effects and fates of nanoparticles in the ecosystem. Ecotoxicity studies of nanomaterials are steadily increasing, and microcosm studies of nanomaterials are currently beginning to surface. In this study, microcosm studies of nanomaterials in water and soil ecosystems were extensively investigated based on SCI(E) papers. We found that the microcosm studies have been reported in 12 instances, and mesocosm studies have been reported in only once until now. Advanced research was mostly evaluated at the microorganism level. But integrated analysis of nanotoxicity is required to research the interactions based of various species. Thus, our studies analysed the trend of microcosm studies on nanomaterials in water and soil ecosystems and suggested future directions of microcosm research of nanomaterials.

A Case Study of Biologically Derived Algicidal Substances (Naphthoquinone Derivative) for Mitigate of Stephanodiscus and It's Ecological Changing Monitoring (생물유래 살조물질 Naphthoquinone 유도체의 규조 Stephanodiscus 제어 효과 및 생태계 변화 모니터링: A case study)

  • Joo, Jae-Hyoung;Park, Bum Soo;Kim, Sae Hee;Han, Myung-Soo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2020
  • Blooms of the small centric diatom Stephanodiscus is quite occasional in winter season in temperate freshwater ecosystems. Often, it leads to degradation of water quality and affects quality of supplied drinking water. In previous studies, naphthoquinone (NQ) compounds have been shown to be effective and selective for controlling winter bloom species Stephanodiscus hantzschii. We conducted a 5 ton scale mesocosm experiment to investigate the effects of NQ on native Stephanodiscus sp. collected from Nakdonggang River in water. After treatment with NQ 4-6 compound (0.2 μM), the cell density of Stephanodiscus sp. was rapidly reduced from 5 × 103 cells mL-1 to 0.2 × 103 cells mL-1 for 10 days. Additionally, NQ 4-6 compound did not affect physicochemical factors (water temperature, dissolved oxygen, pH, conductivity, nutrients) and biological factors (bacteria, heterotrophic nanoflagellates, zooplankton). Therefore, these findings suggest that the NQ 4-6 compound has potential as an alternative algicidal substances to effectively mitigate natural Stephanodiscus sp. blooms, and the application of NQ 4-6 compound will restore the healthy aquatic ecosystems.