Browse > Article

Control of Cyanobacteria (Microcystis aeruginosa) Blooms by Floating Aquatic Plant (Iris pseudoacorus): an in situ Mesocosm Experiment Using Stable ($^{13}C$, $^{15}N$) Isotope Tracers  

Kim, Min-Seob (Department of Environmental Marine Sciences, Hanyang University)
Lee, Yeon-Jung (Department of Environmental Marine Sciences, Hanyang University)
Kim, Baik-Ho (Department of Environmental Science, Konkuk University)
Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
An, Kwang-Guk (Department of Bioscience and Biotechnology, Chungnam University)
Park, Sun-Koo (Research of Limnology, ASSUM)
Ume, Han-Yong (Rural Research Institute)
Shin, Kyung-Hoon (Department of Environmental Marine Sciences, Hanyang University)
Publication Information
Abstract
Bottom-up approaches to control of Microcystis aeruginosa blooms were comparatively investigated through an in situ mesocosm experiment using aquatic plants (Iris pseudoacorus). In the mesocosm experiments, floating I. pseudoacorus, seemed to be effective in controlling massive M. aeruginosa blooms in an agricultural reservoir, exhibiting a close coupling with temporal variations in Chl-a and DO concentration. Shading by floating I. pseudoacorus resulted in a reduced phytoplankton abundance inhibiting light energy availability. Moreover, I. pseudoacorus may suppress phytoplankton growth through the excretion of chemical substances, likes a allelopathy, that inhibit phytoplankton photosynthetic activity. The $^{15}N$ atom % of I. pseudoacorus showed higher values than POM, suggesting that I. pseudoacorus assimilates DIN predominantly compared to phytoplankton, which was mostly M. aeruginosa. This result strongly suggests that the M. aeruginosa bloom should be regulated by aquatic plants, like I. pseudoacorus, this approach can affect zooplankton composition. This is the first study that has used stable isotope tracers to evaluate the biomanipulation efficiency through floating I. pseudoacorus.
Keywords
Iris pseudoacorus; Microcystis aeruginosa; bio-control; stable isotope tracer; allelopathy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Koski, M., M. Rosenberg and M. Viitasalo. 1999a. Reporduction and survivial of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Marine Ecology Progress Series 186: 187-197.   DOI
2 Lampert, W. 1987. Laboratory studies on zooplankton-cyanobacteria interactions. NZ J Mar Freshw Res 21: 483-490.   DOI
3 Large, A.R.G., G. Pabon and C. Amoros. 1996. Primary production and primary producers, p. 117-136. In: Fluvial Hydrosystems (Petts, G.E. and C. Amoros, eds.). Chapman & Hall, London.
4 Magalhaes, V.F., R.M. Soares and S.M.F.O. Azevedo. 2001. Microcystin contamination in fish from the Hacarepagua Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39: 1077-1085.   DOI   ScienceOn
5 Jasser, I. 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21-32.   DOI   ScienceOn
6 Jeppesen, E., J.P. Jensen, M. Sondergaard, T.L. Lauridsen, L.J. Pedersen and L. Jensen. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342-343: 151-164.   DOI
7 Jeppesen, E., T.L. Lauridsen, T. Kairesalo and M.R. Perrow. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes, p. 91-114. In: The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., M. Sondergaard and K. Christoffersen, eds.). Springer, New York.
8 Kononen, K., J. Kuparinen, K. Makela, J. Laanemets, J. Pavelson and S. Nommann. 1996. Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf on Finland, Baltic Sea. Limnology and Oceanography 41: 98-112.   DOI   ScienceOn
9 Hanazato, T. and M. Yasuno. 1984. Growth, reproduction and assimilation of Moina macropoda fed on Microcystis and/or Chlorella. Jpn J Ecol 34: 195-202.
10 Hutchinson, G.E. 1975. A Treatise on Limnology. Vol. III. Limnological Botany. Wiley, New York.
11 Carpenter, S.R., J.F. Kitchell and J.R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634-639.   DOI   ScienceOn
12 Hwang, S.J., H.S. Kim and J.K. Shin. 2001. Filter-feeding effect of a freshwater bivalve (Corbicula leana PRIME) on phytoplankton. Korean Journal of Limnology 34(4): 298-309.
13 Infante, A. and W. Riehl. 1984. The effect of Cyanophyta upon zooplankton in a eutrophic lake. Hydrobiologia 113: 293-298.   DOI   ScienceOn
14 Gopal, B. and U. Goel. 1993. Competition and allelopathy in aquatic plant communities. Botanical Review 59: 155-210.   DOI   ScienceOn
15 Gross, E.M. 1999. Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. p. 179-199. In: Principles and Practices in Plant Ecology: Allelochemical Interactions (Inderjit Dakshini, K.M.M. and C.L. Foy, eds.). CRC Press, Boca Raton, FL.
16 Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura. 1983. Measurement of photosynthetic production of a phytoplankton population using a stable 13C isotope. Mar Biol 73: 31-36.   DOI   ScienceOn
17 DeMott, W.R. 1999. Foraging strategies and growth inhibition in 5 daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshw Biol 42: 263-274.   DOI
18 Dittmann, E. and C. Wiegand. 2006. Cyanobacterial toxinsoccurrence, biosynthesis and impact on human affairs. Molecular Nutrition & Food Research 50: 7-17.   DOI   ScienceOn
19 Fulton, R.S. 1988. Resistance to blue-green toxins by Bosmina longirostris. J Plankton Res 10: 771-778.   DOI
20 Engstrom, J., M. Viherluoto and M. Viitasalo. 2001. Effects of toxic and non-toxic cyanobacteria on grazing, zooplanktivory and survival of the mysid shrimp Mysis mixta. Journal of Experimental Marine Biology and Ecology 257: 269-280.   DOI   ScienceOn
21 Benndorf, J. 1990. Conditions for effective biomanipulation: conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201: 187-203.
22 Van Donk, E., R.D. Gulati, A. Iedema and J. Meulemans. 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19-26.   DOI   ScienceOn
23 Bontes, B.M., A.M. Verschoo, L.M. Dionisio Pires, E. Van Donk and B.W. Ibelings. 2007. Functional response of Anodonta anatine feeding on a green algal and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584: 191-204.   DOI   ScienceOn
24 Bunn, S.E., N.R. Loneragan and M.A. Kempster. 1995. Effects of acid washing samples on stable isotope ratios of C and N in penaeid shrimps and seagrass: implications for food web studies using stable isotopes. Limnology and Oceanography 40: 622-625.   DOI   ScienceOn
25 Caraco, J., J.C. Cole, S. Findlay and C. Wigand. 2006. Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56: 219-225.   DOI   ScienceOn
26 Beklioglu, M. 1999. A review on the control of eutrophication in deep and shallow lakes. Turkish Journal of Zoology 23: 327-336.
27 An, K.G., J.Y. Lee, K. Hema, S.J. Lee, S.J. Hwang, B.H. Kim, S.K. Park and H.Y. Um. 2010. Control of algal scum using top-down biomanipulation approach and ecosystem health assessments for efficient reservoir management. Water Air Soil Pollutant 205: 3-24.
28 Balls, H., B. Moss and K. Irvine. 1989. The loss of submerged plants with eutrophication I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwater Biology 22: 71-87.   DOI
29 Barko, J.W. and W.F. James. 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension, p. 197-217. In: The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., M. Sondergaard and K. Christoffersen, eds.). Springer, New York.
30 Tester, P.A., J.T. Turner and D. Shea. 2000. Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. Journal of Plankton Research 22: 47-61.   DOI
31 Wium-Andersen, S., C. Christophersen and G. Houen. 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187-190.   DOI
32 Xie, P. and J.C. Liu. 2001. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms. Sci World 1: 337-356.   DOI
33 Shapiro, J. and D.I. Wright. 1984. Lake restoration by biomanipulation. Freshwater Biology 14: 371-383.   DOI
34 Roman, M.R., A.L. Gauzens, W.K. Rhinehart and J.P. White. 1993. Effects of low oxygen waters on Chesapeake bay zooplankton. Limnology and Oceanography 38: 1603-1614.   DOI   ScienceOn
35 Sarnelle, O. 1993. Herbivore effects on phytoplankton succession in a eutrophic lake. Ecological Monographs 63: 129-149.   DOI   ScienceOn
36 Scheffer, M., S.H. Hospe, M.L. Meijer, B. Moss and E. Jeppesen. 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275-279.   DOI   ScienceOn
37 Sipia V.O., H.T. Kankaanpaa, J. Flinkman, K. Lahti and J.A.O. Meriluoto. 2001. Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environmental Toxicology 16: 330-336.   DOI   ScienceOn
38 Strand, J.A. and S.E.B. Weisner. 2001. Dynamics of submerged macrophyte populations in response to biomanipulation. Freshwater Biology 46: 1397-1408.   DOI   ScienceOn
39 Parker, P.L., R.K. Anderson and A. Lawrence. 1989. A $\delta^{13}C$ and $\delta^{15}N$ tracer study of nutrition in aquaculture: Penaeus vannamei ni an pond growout system, p. 288-303. In: Stable Isotopes in Ecological Research (Rundel, P.W., J.R. Ehleringer and K.A. Nagy, eds.). Springer-Verlag, New York.
40 Strickland, J.D.H. and T.R. Parsons. 1972. A Pratical Handbook of Seawater Analysis. Journal of the Fisheries Research Board of Canada. (Bull.). p. 167-311.
41 Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology, Evolution, and Systematics 18: 293-320.   DOI   ScienceOn
42 Park, S.K., I.K. Cho, O.B. Kwon, J.S. Mun, H.Y. Um and S.J. Hwang. 2008. Algae and nutrient removal by vegetated artificial floating island. Korean J Limnol 41(Special issue): 93-98.
43 Piola, R.F., I.M. Suthers and D. Rissik. 2008. Carbon and nitrogen stable isotope analysis indicates freshwater shrimp Paratya australiensis Kemp, 1917 (Atyidae) assimilate cyanobacterial accumulations. Hydrobiologia 608: 121-132.   DOI   ScienceOn
44 Ozimek, T., R.D. Gulati, E. van Donk. 1990. Can macrophytes be useful in biomanipulation of lakes? The lake Zwemlust example. Hydrobiologia 200/201: 399-407.
45 Paine, R.T. 1969. A note on trophic complexity and community stability. The American Naturalist 103: 91-93.   DOI   ScienceOn
46 O'Farrell, I., P. de Tezanos Pinto, P. Rodriguez, G. Chaparro and H. Pizarro. 2009. Experimental evidence of the dynamic effect of free-floating plankts on phytoplankton ecology. Freshwater Biology 54: 363-375.   DOI   ScienceOn
47 Mehner, T., R. Arlinghaus, S. Berg, H. Dorner, L. Jacobsen, P. Kasprzak, R. Koschel, T. Schulze, C. Skov, C. Wolter and K. Wysujack. 2004. How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zone. Fisheries Management and Ecology 11: 261-275.   DOI   ScienceOn
48 Mohamed, Z.A., W.W. Carmichael and A.A. Hussein. 2003. Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental Toxicology 18: 137-141.   DOI   ScienceOn