• Title/Summary/Keyword: mesh model

Search Result 1,194, Processing Time 0.027 seconds

An Automatic Mesh Generator for Abrupt Region Modeling Using Efficient Node Placements (효율적인 절점 배치를 이용한 박막층을 갖는 해석모델의 자동요소분할)

  • Park, Hyo-Geun;Kim, Hyeong-Seok;Jung, Tae-Koung;Choi, Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1953-1955
    • /
    • 2002
  • An efficient automatic mesh generator suitable for the harsh model, which contains abrupt regions and thin layers, is implemented. It adopts two kinds of node placement scheme. In the beginning, the initial nodes on the boundary are generated automatically by an efficient boundary node generation scheme. And then the inner nodes are placed using nodal spacing value technique repeatedly from the initial mesh to final mesh. The effectiveness of the proposed technique is verified by a thin film micro-strip line modeling, where the final mesh contains no sliver elements.

  • PDF

A New Algorithm for Designing WDM Mesh Networks (그물구조 WDM 망 설계 알고리즘과 망 설계 시스템 연구)

  • Lee Youngho;Chang Yongwon;Park Noik;Lee Soonsuk;Kim Youngbu;Cho Kisung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • In this paper, we deal with a mesh network design problem arising from the deployment of WDM for the optical internet. The mesh network consists of mesh topology for satisfying traffic demand while minimizing the cost of WDM, OXC, and fiber cables. The problem seeks to find an optimal routing of traffic demands in the network such that the total cost is minimized. We formulate the problem as a mixed-integer programming model and devise a tabu search heuristic procedure. Also we develop an optical internet design system that implements the proposed tabu search heuristic procedure. We demonstrate the computational efficacy of the proposed algorithm, compared with CPLEX 8.0.

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.

3D geometric model generation based on a stereo vision system using random pattern projection (랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성)

  • Na, Sang-Wook;Son, Jeong-Soo;Park, Hyung-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF

Automated reduced thermo-mathematical model generation method for satellite considering temperature tolerance and fixed nodes (온도 허용오차와 고정 노드를 고려한 자동화된 위성 축소 열모델 생성 방법)

  • Jimin Nam
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • The task of generating a reduced thermal model of a satellite must be performed at least once in a satellite project to shorten the time of orbital thermal analysis and perform thermal analysis coupled to a launch vehicle. Although there are various methods for generating a reduced thermal model, an intuitive and convenient iso-thermal mesh generation method is used the most widely in practice. However, there is still a lack of research on automation of the isothermal mesh generation method. In this paper, we proposed an automated generation method of satellite reduced thermo-mathematical model based on the isothermal mesh generation method considering temperature tolerance and fixed nodes. The proposed method was validated using three different temperature tolerance cases. The average temperature difference satisfied the guidelines of ECSS.

The Study of Structural Stability by Stacking Method of the Axial Blade (축류 블레이드의 스태킹 방식에 의한 구조 안정성 연구)

  • Jeong, Cheol-Young;Ko, Hee-Hwan;Park, Jun-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 2012
  • This study is to confirm the deformation of blade when the location of stacking is moving. Also, it desire to determine the most stable location of stacking from the analysis. In the previous study, it is Known that moving the location of stacking is not influence to the aerodynamic performance. In this study SolidWorks premium 2010 SP4 is used for structure analysis. In reference blade and other 3 model analysis, the two mesh type is used, one is standard mesh type in SolidWorks, the other is curvature-based mesh type. The result of curvature-based mesh type is more stable than one of the standard mesh type regardless of mesh size, the number of mesh. The deformation of blade tip is the smallest, when the location of stacking is identical to the center of gravity of the blade section profile. So, if possible is design, this study recommends that the location of stacking is identical to the center of gravity the blade.

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

3D Mesh Model Watermarking Based on POCS (POCS에 기반한 3D 메쉬 모델 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong;Lee Kuhn-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1592-1599
    • /
    • 2004
  • In this paper, we proposed the 3D mesh watermarking using projection onto convex sets (POCS). 3D mesh is projected iteratively onto two constraint convex sets until it satisfy the convergence condition. These sets consist of the robustness set and the invisibility set that designed to embed watermark Watermark is extracted without original mesh by using the decision values and the index that watermark is embedded. Experimental results verified that the watermarked mesh have the robustness against mesh simplification, cropping, affine transformation, and vertex randomization as well as the invisibility.

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.