Browse > Article
http://dx.doi.org/10.12989/sss.2019.23.2.185

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation  

Sihombing, Fritz (Ulsan National Institute of Science and Technology (UNIST))
Torbol, Marco (Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Smart Structures and Systems / v.23, no.2, 2019 , pp. 185-194 More about this Journal
Abstract
The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.
Keywords
smooth particle hydrodynamic; parallel computing; tsunami risk assessment; probabilistic approach; dynamic analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jaiswal, R.K., Singh, A.P. and Rastogi, B.K. (2009), "Simulation of the Arabian Sea Tsunami propagation generated due to 1945 Makran Earthquake and its effect on western parts of Gujarat (India) ", Nat. Hazards, 48, 245-258.   DOI
2 Lay, T., et al. (2005), "The great Sumatra-Andaman earthquake of 26 December 2004", Science, 308, 1127-1133.   DOI
3 Lee, W.H.K. (2011), Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Introduction to. Pages 68-78 in (Ed., Meyers, A.R.), Extreme Environmental Events: Complexity in Forecasting and Early Warning. New York, NY: Springer New York.
4 Liu, P.L.F., Cho, Y.S., Briggs, M.J., Kanoglu, U. and Synolakis, C. E. (1995a), "Runup of solitary waves on a Circular Island", J. Fluid. Mech., 302, 259-285.   DOI
5 Liu, P.L.F., Cho, Y.S., Yoon, S.B. and Seo, S.N. (1995b), Numerical simulations of the 1960 Chilean Tsunami propagation and inundation at Hilo, Hawaii. Pages 99-115 in (Eds. Tsuchiya, Y. and Shuto, N.), Tsunami: Progress in Prediction, Disaster Prevention and Warning. Dordrecht: Springer Netherlands.
6 Suppasri, A., Goto, K., Muhari, A., Ranasinghe, P., Riyaz, M., Affan, M., Mas, E., Yasuda, M. and Imamura, F. (2015), "A decade after the 2004 Indian Ocean tsunami: The progress in disaster preparedness and future challenges in Indonesia, Sri Lanka, Thailand and the Maldives", Pure. Appl. Geophys., 172, 3313-3341.   DOI
7 Synolakis, C.E., Bernard, E.N., Titov, V.V., Kanoglu, U. and Gonzalez, F.I. (2008), "Validation and verification of tsunami numerical models", Pure. Appl. Geophys., 165, 2197-2228.   DOI
8 Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E. and Newman, J. (2008), "Tsunami forecast analysis for the May 2006 Tonga tsunami", J. Geophys. Res. Ocean., 113.C12.
9 Titov, V.V. and Gonzalez, F. (1997), Implementation And Testing Of The Method Of Splitting Tsunami (MOST) Model. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory.
10 Wang, X. (2009), User Manual For COMCOT version 1.7 (first draft), Cornel University 65.
11 Wang, X. and Liu, P.L.F. (2005), "A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami", Cmes. Comp. Model. Eng., 10, 171-183.
12 Wang, X. and Liu, P.L.F. (2006), "An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami", J. Hydraul. Res., 44, 147-154.   DOI
13 Ward, S.N. (2001), "Landslide tsunami", J. Geophys. Res-Sol. Ea, 106, 11201-11215.   DOI
14 Athukorala, P.C. and Resosudarmo, B.P. (2005), "The Indian Ocean tsunami: Economic impact, disaster management, and lessons", Asian Econ. Pap, 4, 1-39.
15 Ward, S.N. and Asphaug, E. (2000), "Asteroid impact tsunami: A probabilistic hazard assessment", Icarus, 145, 64-78.   DOI
16 Wei, Y., Chamberlin, C., Titov, V.V., Tang, L.J. and Bernard, E. N. (2013), "Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast", Pure. Appl. Geophys., 170, 1309-1331.   DOI
17 Lowe, D.J. and de Lange, W.P. (2000), "Volcano-meteorological tsunamis, the c. AD 200 Taupo eruption (New Zealand) and the possibility of a global tsunami", Holocene, 10, 401-407.   DOI
18 LPEM (2005), Perhitungan Kebutuhan Dana Pembangunan kembali Aceh in (LPEM) IfEaSR, ed. Jakarta.
19 Lucy, L.B. (1977), A numerical approach to the testing of the fission hypothesis", Astron. J., 82, 1013-1024.   DOI
20 Arcas, D. and Segur, H. (2012), "Seismically generated tsunamis", Philos. T. R. Soc. A, 370, 1505-1542.   DOI
21 Barreiro, A., Crespo, A.J.C., Dominguez, J.M. and Gomez-Gesteira, M. (2013), "Smoothed particle hydrodynamics for coastal engineering problems", Comput. Struct., 120, 96-106.   DOI
22 Bernard, E.N. (2001), Recent Developments in Tsunami Hazard Mitigation. Pages 7-15 in (Ed., Hebenstreit, G.T.), Tsunami Research at the End of a Critical Decade. Dordrecht: Springer Netherlands.
23 Bernard E.N. and Robinson, A.R. (2009), Tsunamis. Harvard University Press.
24 Borrero, J.C. (2005), "Field survey of Northern Sumatra and Banda Aceh, Indonesia after the Tsunami and earthquake of 26 December 2004", Seismol. Res. Lett., 76, 312-320.   DOI
25 Borrero, J.C., Synolakis, C.E. and Fritz, H. (2006), "Northern sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean Tsunami", Earthq. Spectra, 22, 93-104.   DOI
26 Cornell, C.A. (1968), "Engineering seismic risk analysis", B. Seismol. Soc. Am., 58, 1583-1606.   DOI
27 Altomare, C., Crespo, A.J.C., Dominguez, J.M., Gomez-Gesteira, M., Suzuki, T. and Verwaest, T. (2015), "Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures", Coast. Eng., 96, 1-12.   DOI
28 Ammon, C.J., et al. (2005), "Rupture process of the 2004 Sumatra-Andaman earthquake", Science, 308, 1133-1139.   DOI
29 Borrero, J.C., Weiss, R., Okal, E.A., Hidayat, R., Suranto Arcas, D. and Titov, V.V. (2009), "The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: post-tsunami field survey and numerical modelling", Geophys. J. Int., 178, 180-194.   DOI
30 Connor, C.B., Chapman, N.A. and Connor, L.J. (2009), Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge University Press.
31 Crespo, A.J.C., Dominguez, J.M., Rogers, B.D., Gomez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A. and Garcia-Feal, O. (2015), "DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH", Comput. Phys. Commun., 187, 204-216.   DOI
32 Dao, M.H. and Tkalich, P. (2007), "Tsunami propagation modelling - a sensitivity study", Nat. Hazard. Earth. Sys., 7, 741-754.   DOI
33 Dao, M.H., Xu, H., Chan, E.S. and Tkalich, P. (2013), "Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method", Nat. Hazard. Earth. Sys., 13, 3457-3467.   DOI
34 Egorov, Y. (2007), "Tsunami wave generation by the eruption of underwater volcano", Nat. Hazard. Earth. Sys., 7, 65-69.   DOI
35 Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Annu. Rev. Astron. Astrophys., 30, 543-574.   DOI
36 Wijetunge, J.J., Wang, X.M. and Liu, P.L.F. (2008), "Indian Ocean Tsunami on 26 December 2004: Numerical modeling of inundation in three cities on the South Coast of Sri Lanka", J. Earthq. Tsunami, 2, 133-155.   DOI
37 Yolsal-Cevikbilen, S. and Taymaz, T. (2012), "Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean", Tectonophys., 536, 61-100.   DOI
38 Mas, E., Suppasri, A., Imamura, F. and Koshimura, S. (2012), "Agent-based simulation of the 2011 Great East Japan Earthquake/Tsunami Evacuation: An integrated model of tsunami inundation and evacuation", J. Nat. Disast. Sci., 34, 41-57.   DOI
39 Nazara, S. and Resosudarmo, B.P. (2007), Aceh-Nias Reconstruction And Rehabilitation: Progress And Challenges At The End Of 2006.
40 Power, W. (2013), Review of Tsunami Hazard in New Zealand (2013 update). GNS Science Consultancy Report 2013 131:222.
41 Rabinovich, A.B., Vilibic, I. and Tinti, S. (2009), "Meteorological tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band", Phys. Chem. Earth, 34, 891-893.   DOI
42 Shibayama, T. (2015), 2004 Indian Ocean Tsunami. Pages 3-19. Handbook of Coastal Disaster Mitigation for Engineers and Planners, Elsevier Inc.
43 Gonzalez, F.I., et al. (2009), "Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources", J. Geophys. Res. Ocean., 114, C11
44 Geist, E.L. and Parsons, T. (2006), "Probabilistic analysis of tsunami hazards", Nat. Hazards, 37, 277-314.   DOI
45 Geist, E.L., Titov, V.V., Arcas, D., Pollitz, F.F. and Bilek, S.L. (2007), "Implications of the 26 December 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes", B. Seismol. Soc. Am., 97, 249-270.   DOI
46 Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Mon. Not. R. Astron. Soc., 181, 375-389.   DOI
47 Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005), "Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array", Nature, 435, 933-936.   DOI
48 Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J.T. and Watts, P. (2007), "Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami", J. Waterw. Port. Coast, 133, 414-428.   DOI
49 Imamura, F. (1996), "Simulation of wave-packet propagation along sloping beach by TUNAMI-code", World Scientific, 3, 231-241.
50 Imamura, F., Gica, E., Takahashi, T. and Shuto, N. (1995), "Numerical-simulation of the 1992 Flores Tsunami, interpretation of tsunami phenomena in Northeastern Flores Island and damage at Babi Island", Pure. Appl. Geophys., 144, 555-568.   DOI