DOI QR코드

DOI QR Code

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz (Ulsan National Institute of Science and Technology (UNIST)) ;
  • Torbol, Marco (Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2017.03.06
  • Accepted : 2019.01.16
  • Published : 2019.02.25

Abstract

The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Altomare, C., Crespo, A.J.C., Dominguez, J.M., Gomez-Gesteira, M., Suzuki, T. and Verwaest, T. (2015), "Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures", Coast. Eng., 96, 1-12. https://doi.org/10.1016/j.coastaleng.2014.11.001
  2. Ammon, C.J., et al. (2005), "Rupture process of the 2004 Sumatra-Andaman earthquake", Science, 308, 1133-1139. https://doi.org/10.1126/science.1112260
  3. Arcas, D. and Segur, H. (2012), "Seismically generated tsunamis", Philos. T. R. Soc. A, 370, 1505-1542. https://doi.org/10.1098/rsta.2011.0457
  4. Athukorala, P.C. and Resosudarmo, B.P. (2005), "The Indian Ocean tsunami: Economic impact, disaster management, and lessons", Asian Econ. Pap, 4, 1-39.
  5. Barreiro, A., Crespo, A.J.C., Dominguez, J.M. and Gomez-Gesteira, M. (2013), "Smoothed particle hydrodynamics for coastal engineering problems", Comput. Struct., 120, 96-106. https://doi.org/10.1016/j.compstruc.2013.02.010
  6. Bernard, E.N. (2001), Recent Developments in Tsunami Hazard Mitigation. Pages 7-15 in (Ed., Hebenstreit, G.T.), Tsunami Research at the End of a Critical Decade. Dordrecht: Springer Netherlands.
  7. Bernard E.N. and Robinson, A.R. (2009), Tsunamis. Harvard University Press.
  8. Borrero, J.C. (2005), "Field survey of Northern Sumatra and Banda Aceh, Indonesia after the Tsunami and earthquake of 26 December 2004", Seismol. Res. Lett., 76, 312-320. https://doi.org/10.1785/gssrl.76.3.312
  9. Borrero, J.C., Synolakis, C.E. and Fritz, H. (2006), "Northern sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean Tsunami", Earthq. Spectra, 22, 93-104. https://doi.org/10.1193/1.2206793
  10. Borrero, J.C., Weiss, R., Okal, E.A., Hidayat, R., Suranto Arcas, D. and Titov, V.V. (2009), "The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: post-tsunami field survey and numerical modelling", Geophys. J. Int., 178, 180-194. https://doi.org/10.1111/j.1365-246X.2008.04058.x
  11. Connor, C.B., Chapman, N.A. and Connor, L.J. (2009), Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge University Press.
  12. Cornell, C.A. (1968), "Engineering seismic risk analysis", B. Seismol. Soc. Am., 58, 1583-1606. https://doi.org/10.1785/BSSA0580051583
  13. Crespo, A.J.C., Dominguez, J.M., Rogers, B.D., Gomez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A. and Garcia-Feal, O. (2015), "DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH", Comput. Phys. Commun., 187, 204-216. https://doi.org/10.1016/j.cpc.2014.10.004
  14. Dao, M.H. and Tkalich, P. (2007), "Tsunami propagation modelling - a sensitivity study", Nat. Hazard. Earth. Sys., 7, 741-754. https://doi.org/10.5194/nhess-7-741-2007
  15. Dao, M.H., Xu, H., Chan, E.S. and Tkalich, P. (2013), "Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method", Nat. Hazard. Earth. Sys., 13, 3457-3467. https://doi.org/10.5194/nhess-13-3457-2013
  16. Egorov, Y. (2007), "Tsunami wave generation by the eruption of underwater volcano", Nat. Hazard. Earth. Sys., 7, 65-69. https://doi.org/10.5194/nhess-7-65-2007
  17. Geist, E.L. and Parsons, T. (2006), "Probabilistic analysis of tsunami hazards", Nat. Hazards, 37, 277-314. https://doi.org/10.1007/s11069-005-4646-z
  18. Geist, E.L., Titov, V.V., Arcas, D., Pollitz, F.F. and Bilek, S.L. (2007), "Implications of the 26 December 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes", B. Seismol. Soc. Am., 97, 249-270. https://doi.org/10.1785/0120050619
  19. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
  20. Gonzalez, F.I., et al. (2009), "Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources", J. Geophys. Res. Ocean., 114, C11
  21. Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J.T. and Watts, P. (2007), "Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami", J. Waterw. Port. Coast, 133, 414-428. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(414)
  22. Imamura, F. (1996), "Simulation of wave-packet propagation along sloping beach by TUNAMI-code", World Scientific, 3, 231-241.
  23. Imamura, F., Gica, E., Takahashi, T. and Shuto, N. (1995), "Numerical-simulation of the 1992 Flores Tsunami, interpretation of tsunami phenomena in Northeastern Flores Island and damage at Babi Island", Pure. Appl. Geophys., 144, 555-568. https://doi.org/10.1007/BF00874383
  24. Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005), "Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array", Nature, 435, 933-936. https://doi.org/10.1038/nature03675
  25. Jaiswal, R.K., Singh, A.P. and Rastogi, B.K. (2009), "Simulation of the Arabian Sea Tsunami propagation generated due to 1945 Makran Earthquake and its effect on western parts of Gujarat (India) ", Nat. Hazards, 48, 245-258. https://doi.org/10.1007/s11069-008-9261-3
  26. Lay, T., et al. (2005), "The great Sumatra-Andaman earthquake of 26 December 2004", Science, 308, 1127-1133. https://doi.org/10.1126/science.1112250
  27. Lee, W.H.K. (2011), Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Introduction to. Pages 68-78 in (Ed., Meyers, A.R.), Extreme Environmental Events: Complexity in Forecasting and Early Warning. New York, NY: Springer New York.
  28. Liu, P.L.F., Cho, Y.S., Briggs, M.J., Kanoglu, U. and Synolakis, C. E. (1995a), "Runup of solitary waves on a Circular Island", J. Fluid. Mech., 302, 259-285. https://doi.org/10.1017/S0022112095004095
  29. Liu, P.L.F., Cho, Y.S., Yoon, S.B. and Seo, S.N. (1995b), Numerical simulations of the 1960 Chilean Tsunami propagation and inundation at Hilo, Hawaii. Pages 99-115 in (Eds. Tsuchiya, Y. and Shuto, N.), Tsunami: Progress in Prediction, Disaster Prevention and Warning. Dordrecht: Springer Netherlands.
  30. Lowe, D.J. and de Lange, W.P. (2000), "Volcano-meteorological tsunamis, the c. AD 200 Taupo eruption (New Zealand) and the possibility of a global tsunami", Holocene, 10, 401-407. https://doi.org/10.1191/095968300670392643
  31. LPEM (2005), Perhitungan Kebutuhan Dana Pembangunan kembali Aceh in (LPEM) IfEaSR, ed. Jakarta.
  32. Lucy, L.B. (1977), A numerical approach to the testing of the fission hypothesis", Astron. J., 82, 1013-1024. https://doi.org/10.1086/112164
  33. Mas, E., Suppasri, A., Imamura, F. and Koshimura, S. (2012), "Agent-based simulation of the 2011 Great East Japan Earthquake/Tsunami Evacuation: An integrated model of tsunami inundation and evacuation", J. Nat. Disast. Sci., 34, 41-57. https://doi.org/10.2328/jnds.34.41
  34. Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Annu. Rev. Astron. Astrophys., 30, 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
  35. Nazara, S. and Resosudarmo, B.P. (2007), Aceh-Nias Reconstruction And Rehabilitation: Progress And Challenges At The End Of 2006.
  36. Power, W. (2013), Review of Tsunami Hazard in New Zealand (2013 update). GNS Science Consultancy Report 2013 131:222.
  37. Rabinovich, A.B., Vilibic, I. and Tinti, S. (2009), "Meteorological tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band", Phys. Chem. Earth, 34, 891-893. https://doi.org/10.1016/j.pce.2009.10.006
  38. Shibayama, T. (2015), 2004 Indian Ocean Tsunami. Pages 3-19. Handbook of Coastal Disaster Mitigation for Engineers and Planners, Elsevier Inc.
  39. Suppasri, A., Goto, K., Muhari, A., Ranasinghe, P., Riyaz, M., Affan, M., Mas, E., Yasuda, M. and Imamura, F. (2015), "A decade after the 2004 Indian Ocean tsunami: The progress in disaster preparedness and future challenges in Indonesia, Sri Lanka, Thailand and the Maldives", Pure. Appl. Geophys., 172, 3313-3341. https://doi.org/10.1007/s00024-015-1134-6
  40. Synolakis, C.E., Bernard, E.N., Titov, V.V., Kanoglu, U. and Gonzalez, F.I. (2008), "Validation and verification of tsunami numerical models", Pure. Appl. Geophys., 165, 2197-2228. https://doi.org/10.1007/s00024-004-0427-y
  41. Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E. and Newman, J. (2008), "Tsunami forecast analysis for the May 2006 Tonga tsunami", J. Geophys. Res. Ocean., 113.C12.
  42. Titov, V.V. and Gonzalez, F. (1997), Implementation And Testing Of The Method Of Splitting Tsunami (MOST) Model. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory.
  43. Wang, X. (2009), User Manual For COMCOT version 1.7 (first draft), Cornel University 65.
  44. Wang, X. and Liu, P.L.F. (2005), "A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami", Cmes. Comp. Model. Eng., 10, 171-183.
  45. Wang, X. and Liu, P.L.F. (2006), "An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami", J. Hydraul. Res., 44, 147-154. https://doi.org/10.1080/00221686.2006.9521671
  46. Ward, S.N. (2001), "Landslide tsunami", J. Geophys. Res-Sol. Ea, 106, 11201-11215. https://doi.org/10.1029/2000JB900450
  47. Ward, S.N. and Asphaug, E. (2000), "Asteroid impact tsunami: A probabilistic hazard assessment", Icarus, 145, 64-78. https://doi.org/10.1006/icar.1999.6336
  48. Wei, Y., Chamberlin, C., Titov, V.V., Tang, L.J. and Bernard, E. N. (2013), "Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast", Pure. Appl. Geophys., 170, 1309-1331. https://doi.org/10.1007/s00024-012-0519-z
  49. Wijetunge, J.J., Wang, X.M. and Liu, P.L.F. (2008), "Indian Ocean Tsunami on 26 December 2004: Numerical modeling of inundation in three cities on the South Coast of Sri Lanka", J. Earthq. Tsunami, 2, 133-155. https://doi.org/10.1142/S1793431108000293
  50. Yolsal-Cevikbilen, S. and Taymaz, T. (2012), "Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean", Tectonophys., 536, 61-100. https://doi.org/10.1016/j.tecto.2012.02.019