• 제목/요약/키워드: mesenchymal stem cells (MSCs)

검색결과 260건 처리시간 0.024초

Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells

  • Shin, Jae Woo;Ryu, Seungwon;Ham, Jongho;Jung, Keehoon;Lee, Sangho;Chung, Doo Hyun;Kang, Hye-Ryun;Kim, Hye Young
    • Molecules and Cells
    • /
    • 제44권8호
    • /
    • pp.580-590
    • /
    • 2021
  • Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.

홍조류인 Gracilaria vermiculophylla 추출물에 의한 노화 골수유래 중간엽줄기세포의 항노화 및 분화능력 개선 효과 (Extracts from Gracilaria vermiculophylla Prevent Cellular Senescence and Improve Differentiation Potential in Replicatively Senescent Human Bone Marrow Mesenchymal Stem Cells)

  • 정신구;조태오;조광원
    • 생명과학회지
    • /
    • 제28권9호
    • /
    • pp.1042-1047
    • /
    • 2018
  • 홍조류인 꼬물꼬시래기(Gracilaria vermiculophylla)는 전 세계의 해변 지역에 널리 퍼져 있으며 아시아 국가에서 식량 자원으로 이용되어왔다. 이전 연구에 따르면, Gracilaria 속 홍조류 추출물에서 항산화 및 항염증 효과가 보고 되었다. 본 연구에서는 노화된 인간의 골수 유래 중간엽 줄기세포(hBM-MSCs)를 이용하여 Gracilaria vermiculophylla 추출물(GV-Ex)의 항노화 효과를 조사하였다. MTT 분석와 immunoblot 분석(apoptotic protein p53과 cleaved caspase-3)을 이용하여, GV-Ex 전처리는 산화적 스트레스에 의해 손상된 hBM-MSCs의 세포생존력을 향상시킴을 확인하였다. 또, 세포내 생성된 ROS는 장기간 배양 된 MSCs (Passages 17; P-17)와 P-7 MSC에서 측정하여 서로 비교하였는데, P-17 MSC에서 증가되었고, GV-Ex 처리하면(GV-Ex treated P-17 MSCs) 유의하게 감소되었다. 또한, 항산화 효소인 SOD1와 SOD2, CAT의 발현 역시 GV-Ex 처리함에 따라 복원됨을 관찰하였다. 노화 표지단백질인 p53와 p21, p16 등의 발현 또한 GV-Ex를 처리한 P-17 MSC에서 감소되었다. 줄기세포의 골세포(osteocytes) 혹은 지방세포(adipocytes)로 분화하는 능력 역시 GV-Ex를 처리한 P-17 MSCs에서 개선되었다. 이상과 같은 결과를 통해, GV 추출물은 노화된 줄기세포의 기능을 개선함을 시사한다.

GAPDH, β-actin and β2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells

  • Nazari, Fatemeh;Parham, Abbas;Maleki, Adham Fani
    • Journal of Animal Science and Technology
    • /
    • 제57권5호
    • /
    • pp.18.1-18.8
    • /
    • 2015
  • Background: Quantitative real time reverse transcription PCR (qRT-PCR) is one of the most important techniques for gene-expression analysis in molecular based studies. Selecting a proper internal control gene for normalizing data is a crucial step in gene expression analysis via this method. The expression levels of reference genes should be remained constant among cells in different tissues. However, it seems that the location of cells in different tissues might influence their expression. The purpose of this study was to determine whether the source of mesenchymal stem cells (MSCs) has any effect on expression level of three common reference genes (GAPDH, ${\beta}$-actin and ${\beta}2$-microglobulin) in equine marrow- and adipose-derived undifferentiated MSCs and consequently their reliability for comparative qRT-PCR. Materials and methods: Adipose tissue (AT) and bone marrow (BM) samples were harvested from 3 mares. MSCs were isolated and cultured until passage 3 (P3). Total RNA of P3 cells was extracted for cDNA synthesis. The generated cDNAs were analyzed by quantitative real-time PCR. The PCR reactions were ended with a melting curve analysis to verify the specificity of amplicon. Results: The expression levels of GAPDH were significantly different between AT- and BM-derived MSCs (p < 0.05). Differences in expression level of ${\beta}$-actin (P < 0.001) and B2M (P < 0.006.) between MSCs derived from AT and BM were substantially higher than GAPDH. In addition, the fold change in expression levels of GAPDH, ${\beta}$-actin and B2M in AT-derived MSCs compared to BM-derived MSCs were 2.38, 6.76 and 7.76, respectively. Conclusion: This study demonstrated that GAPDH and especially ${\beta}$-actin and B2M express in different levels in equine AT- and BM-derived MSCs. Thus they cannot be considered as reliable reference genes for comparative quantitative gene expression analysis in MSCs derived from equine bone marrow and adipose tissue.

Nanosphere Form of Curcumin Stimulates the Migration of Human Umbilical Cord Blood Derived Mesenchymal Stem Cells

  • Kim, Do-Wan;Kim, Ju Ha;Lee, Sei-Jung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2020년도 정기학술대회 발표논문집
    • /
    • pp.221-221
    • /
    • 2020
  • Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases. In the present study, we found the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) during the wound closure. We found that the efficacy of hUCB-MSCs migration induced by CN was 1000-fold higher than that of curcumin powder. CN significantly increased the motility of hUCB-MSCs by activating c-Src, which is responsible for the phosphorylation of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). CN induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhances wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.

  • PDF

TRAIL Based Therapy: Overview of Mesenchymal Stem Cell Based Delivery and miRNA Controlled Expression of TRAIL

  • Attar, Rukset;Sajjad, Farhana;Qureshi, Muhammad Zahid;Tahir, Fizza;Hussain, Ejaz;Fayyaz, Sundas;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6495-6497
    • /
    • 2014
  • Rapidly increasing number of outstanding developments in the field of TRAIL mediated signaling have revolutionized our current information about inducing and maximizing TRAIL mediated apoptosis in resistant cancer cells. Data obtained with high-throughput technologies have provided finer resolution of tumor biology and now it is known that a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constitutes the tumor stroma. Utility of mesenchymal stem cells (MSCs) as cellular vehicles has added new layers of information. There is sufficient experimental evidence substantiating efficient gene deliveries into MSCs by retroviral, lentiviral and adenoviral vectors. Moreover, there is a paradigm shift in molecular oncology and recent high impact research has shown controlled expression of TRAIL in cancer cells on insertion of complementary sequences for frequently downregulated miRNAs. In this review we have attempted to provide an overview of utility of TRAIL engineered MSCs for effective killing of tumor and potential of using miRNA response elements as rheostat like switch to control expression of TRAIL in cancer cells.

The activation of NLRP3 inflammasome potentiates the immunomodulatory abilities of mesenchymal stem cells in a murine colitis model

  • Ahn, Ji-Su;Seo, Yoojin;Oh, Su-Jeong;Yang, Ji Won;Shin, Ye Young;Lee, Byung-Chul;Kang, Kyung-Sun;Sung, Eui-Suk;Lee, Byung-Joo;Mohammadpour, Hemn;Hur, Jin;Shin, Tae-Hoon;Kim, Hyung-Sik
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.329-334
    • /
    • 2020
  • Inflammasomes are cytosolic, multiprotein complexes that act at the frontline of the immune responses by recognizing pathogen- or danger-associated molecular patterns or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulatory effects. In this study, we investigated the expression and functional regulation of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in human umbilical cord blood-derived MSCs (hUCB-MSCs). hUCB-MSCs expressed inflammasome components that are necessary for its complex assembly. Interestingly, NLRP3 inflammasome activation suppressed the differentiation of hUCB-MSCs into osteoblasts, which was restored when the expression of adaptor proteins for inflammasome assembly was inhibited. Moreover, the suppressive effects of MSCs on T cell responses and the macrophage activation were augmented in response to NLRP3 activation. In vivo studies using colitic mice revealed that the protective abilities of hUCB-MSCs increased after NLRP3 stimulation. In conclusion, our findings suggest that the NLRP3 inflammasome components are expressed in hUCB-MSCs and its activation can regulate the differentiation capability and the immunomodulatory effects of hUCB-MSCs.

Comparison of Developmental Competency of Porcine Embryos Cloned with Mesenchymal Stem Cells and Somatic Cells

  • Jin Hai-Feng;Kumar B. Mohana;Cho Sung-Keun;Ock Sun-A;Jeon Byeong-Gyun;Balasubramanian S.;Choe Sang-Yong;Rho Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.119-124
    • /
    • 2006
  • The present study compared the developmental potential of cloned porcine embryos with mesenchymal stem cells (MSCs), fetal fibroblasts (FFs) and cumulus cells (CCs) by assessing the cleavage and blastocyst rate, total cell number, inner cell mass (ICM) ratio and apoptosis. MSCs were isolated by ficoll gradients from femur of -6 month old female pig, and maintained for primary cultures. FFs from a female fetus at ${\sim}30$ day of gestation were established, and CCs were obtained from cumulus oocyte complexes (COCs) aspirated from $3{\sim}6$ mm follicles in diameter. Donor cells at $3{\sim}4$ passage were employed for nuclear transfer (NT). COCs were matured and fertilized in vitro(IVF) as control. Cleavage rate was significantly (P<0.05) higher in IVF than in NT embryos with MSCs, FFs and CCs ($82.7{\pm}8.9%\;vs\;70.6{\pm}5.4,\;68.7{\pm}5.1\;and\;63.4{\pm}5.6%$, respectively). However, blastocyst rates in IVF and NT embryos derived from MSCs ($24.5{\pm}2.8\;and\;20.4{\pm}8.3%$) did not differ, but were significantly (P<0.05) higher than NT derived from FFs and CCs ($10.6{\pm}2.7\;and\;9.8{\pm}2.1%$). Total cell number and the ratio of ICM to total cells among blastocysts cloned from MSCs ($35.4{\pm}5.2\;and\;0.40{\pm}0.09%$, respectively) were significantly (P<0.05) higher than those from FFs and CCs ($24.9{\pm}6.2%\;vs\;0.19{\pm}0.16,\;23.6{\pm}5.5\;and\;0.17{\pm}0.16%$, respectively). Proportions of TUNEL positive cells in NT embryos from FFs and CCs ($6.9{\pm}1.5\;and\;7.4{\pm}1.7%$, respectively) were significantly (P<0.05) higher than in MSCs ($4.8{\pm}1.4%$) and IVF ($2.3{\pm}0.9%$). The results demonstrate that MSCs have a greater potential as donor cells than FFs and CCs in achieving enhanced production of cloned porcine embryos.

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Identification of Differentially Expressed Genes in Human Mesenchymal Stem Cell-Derived Neurons

  • Heo, Ji-Hye;Cho, Kyung-Jin;Choi, Dal-Woong;Kim, Suhng-Wook
    • Toxicological Research
    • /
    • 제26권1호
    • /
    • pp.15-19
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have greater potential for immediate clinical and toxicological applications, due to their ability to self-renew, proliferate, and differentiate into a variety of cell types. To identify novel candidate genes that were specifically expressed during transdifferentiation of human MSCs to neuronal cells, we performed a differential expression analysis with random priming approach using annealing control primer-based differential display reverse transcription-polymerase chain reaction approach. We identified genes for acyl-CoA thioesterase, tissue inhibitor of metalloproteinases-1, brain glycogen phosphorylase, ubiquitin C-terminal hydrolase and aldehyde reductase were up-regualted, whereas genes for transgelin and heparan sulfate proteoglycan were down-regulated in MSC-derived neurons. These differentially expressed genes may have potential role in regulation of neurogenesis. This study could be applied to environmental toxicology in the field of testing the toxicity of a chemical or a physical agent.