• 제목/요약/키워드: meromorphic univalent functions

검색결과 12건 처리시간 0.018초

AREA DISTORTION UNDER MEROMORPHIC MAPPINGS WITH NONZERO POLE HAVING QUASICONFORMAL EXTENSION

  • Bhowmik, Bappaditya;Satpati, Goutam
    • 대한수학회지
    • /
    • 제56권2호
    • /
    • pp.439-455
    • /
    • 2019
  • Let ${\Sigma}_k(p)$ be the class of univalent meromorphic functions defined on the unit disc ${\mathbb{D}}$ with k-quasiconformal extension to the extended complex plane ${\hat{\mathbb{C}}}$, where $0{\leq}k<1$. Let ${\Sigma}^0_k(p)$ be the class of functions $f{\in}{\Sigma}_k(p)$ having expansion of the form $f(z)=1/(z-p)+{\sum_{n=1}^{\infty}}\;b_nz^n$ on ${\mathbb{D}}$. In this article, we obtain sharp area distortion and weighted area distortion inequalities for functions in ${\sum_{k}^{0}}(p)$. As a consequence of the obtained results, we present a sharp upper bound for the Hilbert transform of characteristic function of a Lebesgue measurable subset of ${\mathbb{D}}$.

A CRITERION FOR BOUNDED FUNCTIONS

  • Nunokawa, Mamoru;Owa, Shigeyoshi;Sokol, Janusz
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.215-225
    • /
    • 2016
  • We consider a sufficient condition for w(z), analytic in ${\mid}z{\mid}$ < 1, to be bounded in ${\mid}z{\mid}$ < 1, where $w(0)=w^{\prime}(0)=0$. We apply it to the meromorphic starlike functions. Also, a certain Briot-Bouquet differential subordination is considered. Moreover, we prove that if $p(z)+zp^{\prime}(z){\phi}(p(z)){\prec}h(z)$, then $p(z){\prec}h(z)$, where $h(z)=[(1+z)(1-z)]^{\alpha}$, under some additional assumptions on ${\phi}(z)$.