A CRITERION FOR BOUNDED FUNCTIONS

Mamoru Nunokawa, Shigeyoshi Owa, and Janusz Sokó乇

Abstract

We consider a sufficient condition for $w(z)$, analytic in $|z|<$ 1 , to be bounded in $|z|<1$, where $w(0)=w^{\prime}(0)=0$. We apply it to the meromorphic starlike functions. Also, a certain Briot-Bouquet differential subordination is considered. Moreover, we prove that if $p(z)+$ $z p^{\prime}(z) \phi(p(z)) \prec h(z)$, then $p(z) \prec h(z)$, where $h(z)=[(1+z)(1-z)]^{\alpha}$, under some additional assumptions on $\phi(z)$.

1. Introduction

Let \mathcal{H} denote the class of functions analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}$: $|z|<1\}$, and denote by \mathcal{A} the class of analytic functions in \mathbb{D} and usually normalized, i.e., $\mathcal{A}=\left\{f \in \mathcal{H}: f(0)=0, f^{\prime}(0)=1\right\}$. We say that the $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in the unit disc \mathbb{D}, written $f \prec g$ if and only if there exists an analytic function $w \in \mathcal{H}$ such that $|w(z)| \leq|z|$ and $f(z)=g[w(z)]$ for $z \in \mathbb{D}$. Therefore $f \prec g$ in \mathbb{D} implies $f(\mathbb{D}) \subset g(\mathbb{D})$. In particular if g is univalent in \mathbb{D}, then the Subordination Principle says that $f \prec g$ if and only if $f(0)=g(0)$ and $f(|z|<r) \subset g(|z|<r)$, for all $r \in(0,1]$.

Let β, γ be complex numbers and let $p, h \in \mathcal{H}$, with $h(0)=p(0)$. The first-order differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \quad(z \in \mathbb{D})
$$

is called the Briot-Bouquet differential subordination. A lot of the results on the Briot-Bouquet differential subordination are collected in [5, Ch.3]. It seems that among contained there cases was not considered the case $\gamma=0, \beta=1$ and

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}}
$$

where $0<\alpha<1$. In this work we consider it.

Received January 27, 2015.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
Key words and phrases. analytic, meromorphic, convex, starlike, univalent, Nunokawa's lemma, Briot-Bouquet, differential subordination.

For integer $n \geq 0$, denote by Σ_{n} the class of meromorphic functions, defined in $\mathbb{U}=\{z: 0<|z|<1\}$, which are of the form

$$
F(z)=\frac{1}{z}+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots .
$$

A function $F \in \Sigma_{0}$ is said to be starlike if it is univalent and the complement of $F(\dot{\mathbb{U}})$ is starlike with respect to the origin. Denote by Σ_{0}^{*} the class of such functions. If $F \in \Sigma_{0}$, then it is well-known that $F \in \Sigma_{0}^{*}$ if and only if

$$
\mathfrak{R e}\left\{-\frac{z F^{\prime}(z)}{F(z)}\right\}>0
$$

for $z \in \dot{\mathbb{U}}$. For $\alpha<1$, let

$$
\Sigma_{n, \alpha}^{*}=\left\{F \in \Sigma_{n}: \mathfrak{R e}\left\{-\frac{z F^{\prime}(z)}{F(z)}\right\}>\alpha, z \in \dot{\mathbb{U}}\right\},
$$

the class of meromorphic-starlike functions of order α. For $0<\alpha \leq 1$, let

$$
\Sigma_{n}^{*}(\alpha)=\left\{F \in \Sigma_{n}:\left|\arg \left\{-\frac{z F^{\prime}(z)}{F(z)}\right\}\right|<\frac{\alpha \pi}{2}, \quad z \in \dot{\mathbb{U}}\right\}
$$

the class of meromorphic-strongly starlike functions of order α.
Definition 1 ([5]). We denote by \mathcal{Q} the class of functions f that are analytic and injective on $\overline{\mathbb{D}} \backslash E(f)$, where

$$
E(f):=\left\{\zeta: \zeta \in \partial \mathbb{D} \text { and } \lim _{z \rightarrow \zeta} f(z)=\infty\right\},
$$

and are such that

$$
f^{\prime}(\zeta) \neq 0 \quad(\zeta \in \partial(\mathbb{D}) \backslash E(f))
$$

Lemma 1.1 ([5]). Let $q \in \mathcal{Q}$ with $q(0)=a$ and let

$$
p(z)=a+a_{n} z^{n}+\cdots
$$

be analytic in \mathbb{D} with

$$
p(z) \not \equiv a \quad \text { and } \quad n \in \mathbb{N}=\{1,2,3, \ldots\} .
$$

If p is not subordinate to q, then there exist points

$$
z_{0}=r_{0} e^{i \theta} \in \mathbb{D} \quad \text { and } \quad \zeta_{0} \in \partial \mathbb{D} \backslash E(q)
$$

for which

$$
\begin{gathered}
p\left(|z|<r_{0}\right) \subset q(\mathbb{D}), \\
p\left(z_{0}\right)=q\left(\zeta_{0}\right)
\end{gathered}
$$

and

$$
z_{0} p^{\prime}\left(z_{0}\right)=k \zeta_{0} q^{\prime}\left(\zeta_{0}\right)
$$

for some $k \geq n$.
Lemma 1.1 is a generalization of Jack's lemma [3]. To prove the main results, we also need the following generalization of Nunokawa's lemma, [6], [7], see also [2].

Lemma 1.2 ([9]). Let $p(z)$ be of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=m \geq 1}^{\infty} a_{n} z^{n}, \quad a_{m} \neq 0, \quad(z \in \mathbb{D}), \tag{1}
\end{equation*}
$$

with $p(z) \neq 0$ in \mathbb{D}. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|\arg \{p(z)\}|<\pi \alpha / 2 \quad \text { in } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\pi \alpha / 2
$$

for some $\alpha>0$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha,
$$

where

$$
\begin{equation*}
k \geq m\left(a^{2}+1\right) /(2 a) \quad \text { when } \arg \left\{p\left(z_{0}\right)\right\}=\pi \alpha / 2 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
k \leq-m\left(a^{2}+1\right) /(2 a) \quad \text { when } \quad \arg \left\{p\left(z_{0}\right)\right\}=-\pi \alpha / 2 \tag{3}
\end{equation*}
$$

where

$$
\left\{p\left(z_{0}\right)\right\}^{1 / \alpha}= \pm i a, a>0
$$

2. Main result

Theorem 2.1. Let $w(z)$ be analytic in \mathbb{D} with $w(0)=w^{\prime}(0)=0$ and suppose that

$$
\begin{equation*}
\left|w(z)-\frac{z w^{\prime}(z)}{w(z)}\right|<\sqrt{\frac{1-\mathfrak{R e}\{z\}}{1+\mathfrak{R e}\{z\}}} \quad(z \in \mathbb{D}) . \tag{4}
\end{equation*}
$$

Then we have

$$
|w(z)|<1 \quad(z \in \mathbb{D})
$$

Proof. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|w(z)|<1 \quad\left(|z|<\left|z_{0}\right|\right)
$$

and

$$
w\left(z_{0}\right)=e^{i \theta}
$$

then from Lemma 1.1, we have

$$
\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}=k \geq 2 .
$$

Then it follows that

$$
\begin{aligned}
\left|w\left(z_{0}\right)-\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}\right|^{2} & =\left|e^{i \theta}-\frac{z_{0} w^{\prime}\left(z_{0}\right)}{e^{i \theta}} \frac{e^{i \theta}}{1+e^{i \theta}}\right|^{2} \\
& =(\cos \theta-k / 2)^{2}+\sin ^{2} \theta\left(1-\frac{k}{2(1+\cos \theta)}\right)^{2}
\end{aligned}
$$

$$
=\varphi(k), \text { say. }
$$

Then we have

$$
\begin{aligned}
\varphi^{\prime}(k) & =-(\cos \theta-k / 2)-\frac{\sin ^{2} \theta}{1+\cos \theta}\left(1-\frac{k}{1+\cos \theta}\right) \\
& =\frac{k}{1+\cos \theta}-1>0,
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(2) & =(\cos \theta-1)^{2}+\left(1-\frac{1}{1+\cos \theta}\right)^{2} \sin ^{2} \theta \\
& =\frac{2 \cos ^{2} \theta}{1+\cos \theta}-2 \cos \theta+1 \\
& =\frac{1-\cos \theta}{1+\cos \theta} \\
& =\frac{1-\mathfrak{R e}\left\{z_{0}\right\}}{1+\mathfrak{R e}\left\{z_{0}\right\}} .
\end{aligned}
$$

Therefore, there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
\left|w\left(z_{0}\right)-\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}\right|^{2} \geq \frac{1-\mathfrak{R e}\left\{z_{0}\right\}}{1+\mathfrak{R e}\left\{z_{0}\right\}}
$$

for all $k \geq 2$. It contradicts (4) and it completes the proof.
Corollary 2.2. Let

$$
F(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

be analytic in $0<|z|<1$ and suppose that for $0<\alpha<\alpha_{0}$

$$
\left|-\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}-2\right|<\sqrt{\frac{1-\mathfrak{R e}\{z\}}{1+\mathfrak{R e}\{z\}}} \quad(z \in \mathbb{D}) .
$$

Then

$$
\left|-\frac{z F^{\prime}(z)}{F(z)}-1\right|<1 \quad(z \in \mathbb{D})
$$

it follows that $F(z)$ is meromorphic-starlike in \mathbb{D}.
For another sufficient condition for strongly starlikeness, we refer to the recent paper [8].

Theorem 2.3. Let $p(z)$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad(z \in \mathbb{D}) . \tag{5}
\end{equation*}
$$

Suppose that $\alpha \in(0,1]$ and

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{p(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}} \quad(z \in \mathbb{D}) . \tag{6}
\end{equation*}
$$

Then we have

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(z \in \mathbb{D}) .
$$

Proof. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|\arg \{p(z)\}|<\pi \alpha / 2 \quad\left(|z|<\left|z_{0}\right|\right)
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\pi \alpha / 2, \quad p\left(z_{0}\right)=(\pm i a)^{\alpha},
$$

then from Nunokawa's Lemma 1.2, we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha
$$

where

$$
k \geq \frac{a^{2}+1}{2 a} \geq 1, \text { when } \arg \left\{p\left(z_{0}\right)\right\}=\pi \alpha / 2
$$

and

$$
k \leq-\frac{a^{2}+1}{2 a} \leq-1, \text { when } \arg \left\{p\left(z_{0}\right)\right\}=-\pi \alpha / 2 .
$$

For the case $\arg \left\{p\left(z_{0}\right)\right\}=\alpha \pi / 2$, we have

$$
\begin{equation*}
p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=(i a)^{\alpha}+i \alpha k . \tag{7}
\end{equation*}
$$

Let us put $z=e^{i \theta}$ in the right hand side of (6).

$$
\begin{equation*}
\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}}=\left(\frac{i \sin \theta}{1-\cos \theta}\right)^{\alpha}+\frac{i \alpha}{\sin \theta} . \tag{8}
\end{equation*}
$$

It is easy to see that it is possible to find θ_{0} such that for given $a>0$

$$
a=\frac{\sin \theta_{0}}{1-\cos \theta_{0}} .
$$

Then

$$
\begin{equation*}
\alpha k>\frac{\alpha\left(a^{2}+1\right)}{2 a}=\frac{\alpha}{\sin \theta_{0}}, \tag{9}
\end{equation*}
$$

and hence from (7), (8) and (9) we get that

$$
p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}
$$

lies outside the image of the unit disc under the function

$$
\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}}
$$

which is convex in the direction of the imaginary axis. It contradicts (5). For the case $\arg \left\{p\left(z_{0}\right)\right\}=-\alpha \pi / 2$, in the same way as before, we also can obtain a contradiction (5), which completes the proof.

For $\alpha=1$ Theorem 2.3 becomes the result in [5, p. 140]. For $0<\alpha<1$ Theorem 2.3 is an extension of Theorem 3.2i [5, p. 97].
Corollary 2.4. Let

$$
f(z)=z+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

be analytic in \mathbb{D} and suppose that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}+\frac{2 \alpha z}{1-z^{2}} \quad(z \in \mathbb{D}) .
$$

Then we have

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(z \in \mathbb{D})
$$

it follows that $f(z)$ is strongly starlike of order α in \mathbb{D}.
Theorem 2.5. Let $h(z)=\{(1+z) /(1-z)\}^{\alpha}, \alpha \in(0,1]$, and $p(z)$ are analytic in \mathbb{D} with $h(0)=p(0)=1$. Assume also that $\phi(p(z))$ is analytic in \mathbb{D}, moreover $\mathfrak{R e}\{\phi(h(z))\} \geq 0$ in \mathbb{D}. If

$$
\begin{equation*}
p(z)+z p^{\prime}(z) \phi(p(z)) \prec h(z) \quad(z \in \mathbb{D}), \tag{10}
\end{equation*}
$$

then

$$
p(z) \prec h(z) \quad(z \in \mathbb{D}) .
$$

Proof. If there exists a point $z_{0}=e^{i \theta_{0}},\left|z_{0}\right|<1$, such that

$$
p(z) \neq h\left(e^{i \theta}\right) \text { for all } \theta, 0 \leq \theta<2 \pi \text { and }|z|<\left|z_{0}\right|
$$

and

$$
p\left(z_{0}\right)=h\left(e^{i \theta_{0}}\right)
$$

then from the hypothesis of the theorem, we have the following picture, for the case $\arg \left\{p\left(z_{0}\right)\right\}=\alpha \pi / 2<0$.

Then from Nunokawa's Lemma 1.2, we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha
$$

where

$$
\alpha \pi / 2=\arg \left\{p\left(z_{0}\right)\right\}
$$

and

$$
k \geq 1, \text { when } \arg \left\{p\left(z_{0}\right)\right\}=\pi \alpha / 2>0
$$

while

$$
k \leq-1, \text { when } \arg \left\{p\left(z_{0}\right)\right\}=\pi \alpha / 2<0
$$

Figure 1. $c=p\left(z_{0}\right)=h\left(e^{i \theta_{0}}\right)$.

For the case $\arg \left\{p\left(z_{0}\right)\right\}=\alpha \pi / 2>0,1 \leq k$, we have

$$
\begin{aligned}
& \arg \left\{p\left(z_{0}\right)+z_{0} p^{\prime}\left(z_{0}\right) \phi\left(p\left(z_{0}\right)\right)\right\} \\
= & \arg \left\{p\left(z_{0}\right)\left(1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)} \phi\left(p\left(z_{0}\right)\right)\right)\right\} \\
= & \arg \left\{h\left(e^{i \theta_{0}}\right)\right\}+\arg \left\{1+i \alpha k \phi\left(h\left(e^{i \theta_{0}}\right)\right)\right\} \\
> & \arg \left\{h\left(e^{i \theta_{0}}\right\} .\right.
\end{aligned}
$$

This contradicts the hypothesis (10) and for the case $\arg \left\{p\left(z_{0}\right)\right\}=\alpha \pi / 2<0$, $k \leq-1$, applying the same method as the above, we have

$$
\begin{aligned}
& \arg \left\{p\left(z_{0}\right)+z_{0} p^{\prime}\left(z_{0}\right) \phi\left(p\left(z_{0}\right)\right)\right\} \\
= & \arg \left\{h\left(e^{i \theta_{0}}\right)\right\}+\arg \left\{1+\operatorname{i\alpha k} \phi\left(h\left(e^{i \theta_{0}}\right)\right)\right\} \\
< & \arg \left\{h\left(e^{i \theta_{0}}\right\} .\right.
\end{aligned}
$$

This is also a contradiction and therefore, it completes the proof.
Recall here the well known theorem due to Hallenbeck and Ruscheweyh [4].
Theorem A ([4]). Let the function h be analytic and convex univalent in \mathbb{D} with $h(0)=a$. Let also $p(z)=a+b_{n} z^{n}+b_{n+1} z^{n+1}+\cdots$ be analytic in \mathbb{D}. If

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{c} \prec h(z), \quad z \in \mathbb{D} \tag{11}
\end{equation*}
$$

for $\mathfrak{R e}\{c\} \geq 0, c \neq 0$, then

$$
p(z) \prec q_{n}(z) \prec h(z), \quad z \in \mathbb{D},
$$

where $q_{n}(z)=\frac{c}{n z^{c / n}} \int_{0}^{z} t^{c / n-1} h(t) \mathrm{d}$. Moreover, the function $q_{n}(z)$ is convex univalent and is the best dominant of $p \prec q_{n}$ in the sense that if $p \prec q$, then $q_{n} \prec q$.

An another generalization of Theorem A we refer to [5, p. 70]. However, Theorem 2.5 cannot be written in the form presented in [5, p. 70] because $h(z)=$ $\{(1+z) /(1-z)\}^{\alpha}$ is not convex. Therefore, Theorem 2.5 is a new extension of Theorem A. For another generalization of Theorem A in this direction we refer to [5, p. 70] and to [1], [10]. For $\phi(z)=1 /(\beta z+\gamma)$ Theorem 2.5 becomes the following corollary, with the Briot-Bouquet differential subordination, for related result we refer to [5, p. 81].
Corollary 2.6. Let $h(z)=\{(1+z)(1-z)\}^{\alpha}, \alpha \in(0,1]$, and $p(z)$ are analytic in \mathbb{D} with $h(0)=p(0)=1$. Let $\phi(z)=1 /(\beta z+\gamma)$. Assume also that $\phi(p(z))$ is analytic in \mathbb{D}, moreover $\mathfrak{R e}\{\phi(\beta h(z)+\gamma)\} \geq 0$ in \mathbb{D}. If

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \quad(z \in \mathbb{D}), \tag{12}
\end{equation*}
$$

then

$$
p(z) \prec h(z) \quad(z \in \mathbb{D}) .
$$

For $\phi(z)=z^{1 / \alpha}$ Theorem 2.5 becomes the following corollary.
Corollary 2.7. Let $h(z)=\{(1+z) /(1-z)\}^{\alpha}, \alpha \in(0,1]$, and $p(z), p^{1 / \alpha}(z)$ are analytic in \mathbb{D} with $h(0)=p(0)=1$. If

$$
\begin{equation*}
p(z)+z p^{\prime}(z) p^{1 / \alpha}(z) \prec h(z) \quad(z \in \mathbb{D}), \tag{13}
\end{equation*}
$$

then

$$
p(z) \prec h(z) \quad(z \in \mathbb{D}) .
$$

For $\alpha=1 / 2$ Corollary 2.7 becomes the following corollary.
Corollary 2.8. Let $h(z)=\sqrt{(1+z) /(1-z)}$ and $p(z)$ are analytic in \mathbb{D} with $h(0)=p(0)=1$. If

$$
\begin{equation*}
p(z)+z p^{\prime}(z) p^{2}(z) \prec h(z) \quad(z \in \mathbb{D}) \tag{14}
\end{equation*}
$$

then

$$
p(z) \prec h(z) \quad(z \in \mathbb{D}) .
$$

Theorem 2.9. Let $p(z)$ be analytic in $|z|<1$, with $p(0)=-1$ and suppose that

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}-p(z) \prec \frac{1+z}{1-z} \quad(z \in \mathbb{D}) \tag{15}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
-p(z) \prec \frac{1+z}{1-z} \quad(z \in \mathbb{D}) . \tag{16}
\end{equation*}
$$

Proof. If

$$
-p(z) \nprec \frac{1+z}{1-z} \text { for }|z|<1,
$$

then by Lemma 1.1, there exist points

$$
z_{0}=r_{0} e^{i \theta} \in \mathbb{D} \text { and } \zeta_{0} \in \partial \mathbb{D} \backslash\{-1\},
$$

for which

$$
\begin{gather*}
\mathfrak{R e}\left\{-p\left(|z|<r_{0}\right)\right\}>0, \tag{17}\\
-p\left(z_{0}\right)=\frac{1+\zeta_{0}}{1-\zeta_{0}} \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
-z_{0} p^{\prime}\left(z_{0}\right)=k \zeta_{0} \frac{2}{\left(1-\zeta_{0}\right)^{2}} \tag{19}
\end{equation*}
$$

for some $k \geq 1$. By (18) and (19) we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}-p\left(z_{0}\right)=\frac{2 k \zeta_{0}}{1-\zeta_{0}^{2}}+\frac{1+\zeta_{0}}{1-\zeta_{0}}, \tag{20}
\end{equation*}
$$

furthermore,

$$
\begin{aligned}
\mathfrak{R e}\left\{\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}-p\left(z_{0}\right)\right\} & =\mathfrak{R e}\left\{\frac{2 k \zeta_{0}}{1-\zeta_{0}^{2}}\right\}+\mathfrak{R e}\left\{\frac{1+\zeta_{0}}{1-\zeta_{0}}\right\} \\
& =\mathfrak{R e}\left\{\frac{k i}{\mathfrak{I m}\left\{\zeta_{0}\right\}}\right\}+\mathfrak{R e}\left\{\frac{i \mathfrak{I m}\left\{\zeta_{0}\right\}}{1-\mathfrak{R e}\left\{\zeta_{0}\right\}}\right\} \\
& =0
\end{aligned}
$$

This contradicts hypothesis (15) and it completes the proof.
Applying the above theorem, we have the following result.
Theorem 2.10. Let

$$
F(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

be analytic in $0<|z|<1$ and suppose that

$$
\begin{equation*}
\mathfrak{R e}\left\{1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}-2 \frac{z F^{\prime}(z)}{F(z)}\right\}>0 \quad(|z|<1) \tag{21}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathfrak{R e}\left\{-\frac{z F^{\prime}(z)}{F(z)}\right\}>0 \quad(z \in \mathbb{D}) \tag{22}
\end{equation*}
$$

Proof. Let us put

$$
p(z)=\frac{z F^{\prime}(z)}{F(z)} \quad p(0)=-1
$$

Then we have

$$
p(z) F(z)=z F^{\prime}(z)
$$

hence

$$
\frac{z p^{\prime}(z)}{p(z)}+\frac{z F^{\prime}(z)}{F(z)}=1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}
$$

or

$$
\frac{z p^{\prime}(z)}{p(z)}-p(z)=1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}-2 \frac{z F^{\prime}(z)}{F(z)} .
$$

By (21) it has positive real part and hence by Theorem 2.9 we get (21).

References

[1] H. Al-Amiri and P. T. Mocanu, Some simple criteria of starlikeness and convexity for meromorphic functions, Mathematica $\mathbf{3 7 (6 0)}$ (1995), no. 1-2, 11-21.
[2] S. Fukui and K. Sakaguchi, An extension of a theorem of S. Ruscheweyh, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 29 (1980), 1-3.
[3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
[4] D. I. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
[5] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York/Basel 2000.
[6] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 6, 152-153.
[7] , On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 7, 234-237.
[8] M. Nunokawa and J. Sokół, Strongly gamma-starlike functions of order alpha, Ann. Univ. Mariae Curie-Skłodowska, LXVII/2 (2013), 43-51.
[9] , New conditions for starlikeness and strongly starlikeness of order alpha, Houston Journal of Mathematics, in press.
[10] T. N. Shanmugam, S. Sivasubramanian, and H. M. Srivastava, On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci. 2006 (2006), Article ID 29684, 1-13.

Mamoru Nunokawa
University of Gunma
Hoshikuki-cho 798-8, Chuou-Ward, Chiba, 260-0808, Japan
E-mail address: mamoru_nuno@doctor.nifty.jp

Shigeyoshi Owa

Kinki University
Higashi-Osaka, Osaka 577-8502, Japan
E-mail address: shige21@ican.zaq.ne.jp
Janusz Sokó́
Department of Mathematics
Rzeszów University of Technology
Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
E-mail address: jsokol@prz.edu.pl

