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Abstract

A generalization class }°,(a, 3,7) of certain meromorphic univalent
functions with positive coefficients is introduced. The class 3" (a, 8,7) is
a generalization of the class which was stuied by N.E. Cho, S.H. Lee and
S. Owa [1]. The object of the present paper is to prove some properties
of functions in the class 3" (a, 3,7).

1. Introduction
Let }°, denote the class of functions of the form
1 e o]
(11) f(z):;-}-zanz“ (anZO; peN={112!3!})
n=p

which are analytic and univalent in the domain D = {z : 0 < |z| < 1}
with a simple pole at the origin with residue one at z = 0.

A function f(z) in ¥, is said to be a member of the class -, (a, 3, 7)
if it satisfies

(1.2) 22£'(2) + 1] < BI(2y = 1)2°f'(2) + (207 = 1)

for some a(0 < a<1), f(0<B<1), (3 <v<1) andforall z € D.
The class 3_,(a, #,7) when p = 1 was introduced and was studied by
Cho, Lee and Owa ([1]). Therefore, the class 3_,(a, §,7) is a generaliza—

tion of 3, (a, 3,7).

2. Distortion inequalities
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We begin with the statement of the following lemma due to Cho, Lee
and Owa ([1]).

Lemma 1. Let a function f(z) be in the class 3-,. Then f(z) belongs
to the class 3-i(a, 3,7) if and only if

o0

(2.1) 3" n(1+ 2By — B)a, < 26v(1 - a)

n=1
for some (0 < a < 1), f(0<B<1), and 7(3 <7y <1) .
By virtue of the above Lemma 1, it is easy to see that

Lemma 2. Let a function f(z) be in the class 3-,. Then f(z) belongs
to the class 3 (a, 3,7) if and only 1f

(2.2) Y- n(1+428y - Ba, < 287(1 - a)

n=p

for some (0 < a< 1), B(0<B<1), and ¥(3 <y <1) .

Now, we prove

Theorem 1. If f(z) € X,(a,B3,7), then

1 28/(1-a " 1 28v(1 — a) p
@) i~z -pt SO+ oases -
and

_}____ 281 - a) 2|P-1 1 1 26v(1 — a) 2|P1
@4 5 - Trag— g SWEIS g+ 1o, 5

for z € D. Equalities in (2.3) and (2.4) are attained for the function

_1, 26(-a)
@8 =¥ o o)

Proof. Since

> 267(1 - a)
8 2 S G+ 257 )
and
27) i 26v(1 — a)

na, <
n=p a 1+2ﬁ7_6
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for f(z) € ¥,(a,,7), we have

(2.8) If(z)| > ——|z|"23an

n=p

1 28y(1-a) BE

S I Ty L

(2.9) If(z)] < I——+IZI"’Z}an
n=p
1, 28/(1-a) .,

= IZI+p(1+2ﬁ7—ﬁ)|z"
(2.10) If'(z)l > Hz lzlf“lgnan

5 b 28%(1 — a) |21

= 2P 14289 -8""
and
(2.11) If'(z)] < + |27~ ‘Znan

||2 n=p

1 26%(1 — « -
e T;_*l(_)mp 1,

l2[> 1+28y-8

which completes the proof of Theorem 1.

Remark 1. Taking p = 1 in Theorem 1, we have the corresponding results
by Cho, Lee and Owa ([1]).

By the same way as in the proof by Cho, Lee and Owa ([1]), we have

Theorem 2. If f(z) € ¥,(«,B,7), then f(z) is meromorphically starlike
oforder 6(0<é6 <1) in 0<|z| <v(a,p,v,6,p), where

(2.12) e, B,7,6,p) =i f{:{(;;;i 2_‘8:)(”[3.2(; - i; }T°

The result is sharp for the function

1 28v(1 —
(213) @)=+ n(lﬁ:('Z;% g)g)z"

(n > p).
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Theorem 3. If f(z) € ¥,(a, B,7), then f(z) is meromorphically convez
of order 6(0<é6 <1)in 0<|z| <v(a,pB,7,8,p), where

(2.14) (e, B,7,6,p) = mf {2(;71—1261)(5&12— 66)) }"'ﬁ

The result is sharp for the function f(z) given by (2.13).

Remark 2. A function f(z) € 30, is said to be meromorphically starlike
of order 6(0 < 6 < 1) 1f

2f'(2)
f(2)

Further, a function f(z) € ¥, 1s said to be meromorphically convez of
order §(0 < 6 < 1) if

(2.15) Re{—

}>6 (z€D).

22w S5 (zeD)

(2.16) 2)

3. Convolution properties

For the functions

(31) Z ajnz" aJ,n >0;7=1,2)

Nln—l

belonging to 3°,, we denote by f; * fi(2) the convolution of fi(z) and

f2(z)s or
(3.2) fr* fa(z) = _z_ + zﬂl n@2n2"

n=p

Theorem 4. If f;(z)(j = 1,2) are in the class 3_ (a, B,7), then fi*fy(2)
in 3,(6,8,7), where
2p7(1 - @)®
p(1+28y-B)
The result 1s sharp for the functions

5 =_]: 2)67(1 —CY) 2P

(3.3) §=1-

(3 =1,2}
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Proof. We shall find the largest é such that

o0

(3.5) > n(1+28y - Blaynazn < 28%(1—6)

n=p

for fi(z) € T,p(@, B,7). Note that f;(z) € & (a, 8,7) imply

o0

(3.6) S n(1+28y - B)ajn < 2811 —a) (5 =1,2).

n=p

By using the Cauchy-Schwarz inequality, we have

(3.7) 5 n(1+ 28y - B)/Arzazs < 287(1 - a).

Therefore, we only need to prove that

a1nQ2p 1
. ' 4 < >
(3.8) 1—8 S T-gVantza (n2p),
or 1 5
(3.9) Vainazn < 7— (n2p).

Using (3.7), we have to show that

268%(1 — a) 1-46
(3.10) "1+ —fF) ~1—a (n > p),
that is, that ,
269(1 —a)
(3.11) §<1-— (Lt 287~ B) (n 2> p)

Noting that

26%(1 — a)? (n>p)

(3.12) ¢(n)=1_n(1+2ﬂ7—ﬂ)
is an increasing function of n, we have
287(1 - a)®
3.13 6 < =1-
Ay = =10t am - p)

which completes the proof of Theorem 4.

Taking p = 1 in Theorem 4, we have
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Corollary 1. If fj(z) (j = 1,2) are in the class T,(a,B,7), then f, *
fa(z) € £,(6,8,7), where

287(1 - a)?
14 TP i
(14 14287 - B
The result is sharp for the functions
1 284(1 - :
(3.15) f=1s 28010, ;19

z 1+28y-8"

Finally, we prove
Theorem 5. If fi(z) (7 =1,2) are in the class T_,(a, 3,7), then

1 o0

(3.16) he) =5+ (e + )"
n=p
belongs to the class 3°,(6,3,7), where
__4pv(1-a)
p(1+2py - B)

The result is sharp for the function f(z) given by (3.4).
Proof. 1t follows from f;(z) € ¥ (e, 8,7) that

(3.17)

= n¥(1+ 2By — B)?
E,, 4p%9*(1 — a)? “n

= n(1+4 28y - p)
(X 350w
< 1.

Ajn )2

(3.18)

Therefore, we have

& n?(1 4 28y - B)?
,.Z=, 44291 — a)?

Thus, we need to find the largest é such that

1 <n(1+2ﬂ‘r“ﬂ)
1-6 - 4py(1-a)

(3.19) (a1, +ad,) < 2.

(3.20) (n > p).
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or

(321) 487(1 - a)

" P

(n > p).

Since the function

45v(1 —
(3.22) v =1- T (a2 p)
1s increasing on n, we see that
48(1 -
(3.23) §<y(p)=1- p(lﬂ 2 = f)ﬁ).

This completes the proof of Theorem 5.

Making p = 1, Theorem 5 leads to
Corollary 2. If fi(2) (7 = 1,2) are in the class 3 (a, 3,7), then h(z) €
21(61 ﬂs ‘7)) 'thCTC

(3.24) ] e SR — )

1+28y-8
The result is sharp for the functions fi(z) (j = 1,2) given by (3.15).
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