• Title/Summary/Keyword: mercury ions

Search Result 87, Processing Time 0.024 seconds

Mercury ion detection technique using KPFM (KPFM을 통한 수은이온 검출 방법)

  • Park, Chanho;Jang, Kwewhan;Lee, Sangmyung;You, Juneseok;Na, Sungsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.358-360
    • /
    • 2014
  • For the several decades, various nanomaterials are broadly used in industry and research. With the growth of nanotechnology, the study of nanotoxicity is being accelerated. Particularly, mercury ion is widely used in real life. Because the mercury is representative high toxic material, it is highly recommended to detect the mercury ion. In previous reported work, thymine-thymine mismatches (T-T) capture mercury ion and create very stable base pair ($T-Hg^{2+}-T$). Here, we performed the high sensitive sensing method for direct label free detection of mercury ions and DNA binding using Kelvin Probe Force Microscope (KPFM). In this method, 30 base pairs of thymine (T-30) is used for mercury specific DNA binding ($T-Hg^{2+}-T$). KPFM is able to detect the mercury ion because there is difference between bare T-30 DNA and mercury mediated DNA ($T-Hg^{2+}-T$).

  • PDF

Toxic Effects and Distribution of Mercury in Barley Seedlings (보리 유식물에 처리한 수은의 분포 및 독성 연구)

  • 이춘환;장호식
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • The inhibitory effects of mercury ions on the growth of barley seedlings were studied and the distribution of metal elements in the organs of treated plants was investigated by using synchrotron radiation induced X-ray emission (SRIXE). Although the treatment of mercury ions caused growth inhibition, the mercury-specific increase in variable fluorescence and the abolishment of energy-dependent quenching in broken barley chloroplasts as shown by Moon et at. (1992) were not observed in the leaves of growth-inhibited seedlings. Instead the treatment of mercury decreased Fmax and Fo values. However, Fmax/Fo ratio and photochemical and nonphotochemical quenching coefficients were not affected significantly. By SRIXE analysis of $10\mu\textrm{m}$ mercury chloride treated seedlings, accumulation of mercury in roots was observed after 1 hour of treatment and similar concentration was sustained for 48 hours. Relative contents of mercury was high in roots and underground nodes where seeds were attachedl but was very low in leaves. Iron and zinc were also distributed mainly in the lower parts of the seedlings. However after 72 hours of treatment the contents of these metals in roots decreased and their distribution became more uniform, which may lead to death of the plants. These results suggest that the observed inhibitory effects on barley seedlings upto 48 hours after the treatment is not due to direct damages in the photosynthetic apparatus, but due to its accumulation in roots and the consequent retardation of the growth of barley seedlings. The decrease in Fmax and Fo is probably due to the decrease in chlorophyll and protein contents caused by the retardation of growth. The observed slow expansion of primary leaves could be also explained by the retardation of growth, but the fluorescence induction pattern from the leaves did not show characteristic symptoms of leaves under water stress.

  • PDF

Simple Ratiometric Fluorophore for the Selective Detection of Mercury through Hg(II)-Mediated Oxazole Formation

  • Lee, Hee-Jin;Kim, Hae-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3959-3962
    • /
    • 2011
  • A simple propargylamide-fuctionalized chemodosimeter was prepared for the ratiometric fluorescence detection of mercuric ions in HEPES buffer. The chemodosimeter exhibited $Hg^{2+}$-induced propargyl amide-tooxazole transformation, with a significant accompanying ratiometric change in fluorescence. It afforded high selectivity for mercuric ion detection without any competitive inhibition by common alkali, alkaline earth, or other transition metal ions. The probe showed a $17{\times}10^{-6}M$ detection limit for $Hg^{2+}$ ions and potential applicability for detecting aqueous $Hg^{2+}$ ions.

A Pyrenylboronic Acid-based Fluorescence Sensor for Highly Efficient Detection of Mercury(II) Ions (효율적인 수은이온 검출을 위한 피렌-보론산 기반의 형광센서 개발)

  • Lee, Seung Yeob;Lee, Seoung Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.201-207
    • /
    • 2020
  • A new chemosensor based on a self-assembled system has been devised to detect Hg2+ions efficiently. We demonstrated that the amphiphilic building blocks consisting of pyrene and boronic acid (1) aggregate in aqueous solutions and provide an outstanding sensing platform for sensitive detection. The self-assembled 1 exhibited high selectivity and sensitivity for Hg2+ion detection via fluorescence quenching, where the Hg2+ion detection ensued from a fast transmetallation of 1. The Stern-Volmer (SV) quenching constant for its fluorescence quenching by Hg2+ions was approximately 1.58 × 108 M-1. In addition, self-assembled 1 exhibited excellent sensing abilities at nano-molar concentration levels when tap water and freshwater samples were contaminated with of Hg2+ ions.

Biosequestration, Transformation, and Volatilization of Mercury by Lysinibacillus fusiformis Isolated from Industrial Effluent

  • Gupta, Saurabh;Goyal, Richa;Nirwan, Jashan;Cameotra, Swaranjit Singh;Tejoprakash, Nagaraja
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.684-689
    • /
    • 2012
  • In the present study, an efficient mercury-tolerant bacterial strain (RS-5) was isolated from heavy-metalcontaminated industrial effluent. Under shake flask conditions, 97% of the supplemented mercuric chloride was sequestered by the biomass of RS-5 grown in a tryptone soy broth. The sequestered mercuric ions were transformed inside the bacterial cells, as an XRD analysis of the biomass confirmed the formation of mercurous chloride, which is only feasible following the reaction of the elemental mercury and the residual mercuric chloride present within the cells. Besides the sequestration and intracellular transformation, a significant fraction of the mercury (63%) was also volatilized. The 16S rRNA gene sequence of RS-5 revealed its phylogenetic relationship with the family Bacillaceae, and a 98% homology with Lysinibacillus fusiformis, a Gram-positive bacterium with swollen sporangia. This is the first observation of the sequestration and volatilization of mercuric ions by Lysinibacillus sp.

Transgenic Tobacco Plant Expressing Environmental E. coli merA Gene for Enhanced Volatilization of Ionic Mercury

  • Haque, Shafiul;Zeyaullah, Md.;Nabi, Gowher;Srivastava, P.S.;Ali, Arif
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.917-924
    • /
    • 2010
  • The practicability of transgenic tobacco engineered to express bacterial native mercuric reductase (MerA), responsible for the transport of $Hg^{2+}$ ions into the cell and their reduction to elemental mercury ($Hg^0$), without any codon modification, for phytoremediation of mercury pollution was evaluated. Transgenic tobacco plants reduce mercury ions to the metallic form; take up metallic mercury through their roots; and evolve the less toxic elemental mercury. Transformed tobacco produced a large amount of merA protein in leaves and showed a relatively higher resistance phenotype to $HgCl_2$ than wild type. Results suggest that the integrated merA gene, encoding mercuric reductase, a key enzyme of the bacterial mer operon, was stably integrated into the tobacco genome and translated to active MerA, which catalyzes the bioconversion of toxic $Hg^{2+}$ to the least toxic elemental $Hg^0$, and suggest that MerA is capable of reducing the $Hg^{2+}$, probably via NADPH as an electron donor. The transgenic tobacco expressing merA volatilized significantly more mercury than wild-type plants. This is first time we are reporting the expression of a bacterial native merA gene via the nuclear genome of Nicotiana tabacum, and enhanced mercury volatilization from tobacco transgenics. The study clearly indicates that transgenic tobacco plants are reasonable candidates for the remediation of mercurycontaminated areas.

Mercury Ion Removal Using a Packed-Bed Column with Granular Aminated Chitosan

  • JEON, CHOONC
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.497-501
    • /
    • 2005
  • This study deals with the removal of mercury species using a packed-bed column with spherical aminated chitosan material. These adsorbents revealed a high adsorption capacity for mercury species. Experiments with feed solutions of 10 ppm Hg dissolved in distilled water showed an excellent removal with a sharp increase of the filter effluent concentration after a total throughput of 900 bed volumes of feed water. Up to $95\%$ desorption was reached by using 3 bed volumes of 0.01 N EDTA solution. EDTA could be recovered by means of sulfuric acid with about $75\%$ efficiency. Almost the same results were obtained in repeated sorption and desorption experiments at identical conditions. The experiments demonstrated that the sorbents possessed practically no sorption capacity for alkaline earth ions ($Ca^{2+}\;and\;Mg^{2+}$). Their influence on the sorption of mercury was negligible. In experiments with spiked tap water of the Karlsruhe Research Centre and a feed mercury concentration of 0.01 mg/l, the breakthrough of Hg was observed only after a total throughput of about 6,000 bed volumes of feed water.

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

Study on Electrode Selection for Electrochemical Detection of Cadmium and Lead (카드뮴과 납 전기화학적 검출을 위한 전극선정에 관한 연구)

  • Kim, Hak-Jin;Kim, Ki-Young;Moh, Chang-Yeon;Cho, Han-Keun
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.404-409
    • /
    • 2008
  • Excessive presence of heavy metals in environment affects plants and fruits grown in the contaminated area. Rapid on-site monitoring of heavy metals can provide useful information for efficiently characterizing heavy metal-contaminated sites and for minimizing the exposure of the contaminated food crops to humans. This study reports on the evaluation of gold and glassy carbon (GC) electrodes with mercury or bismuth as a coating material for simultaneous determination of cadmium (Cd) and lead (Pb) in 0.1 M $HNO_3$ solution by anodic stripping voltammetry (ASV). The use of a square-wave voltammetric potential between a working electrode and a reference electrode caused Cd and Pb ions deposited on the electrode surface to be oxidized, thereby generating electric currents at different potentials. The mercury-coated gold electrode was not sensitive enough to detect the usable range of Cd concentrations (1 to 100 ppb). The GC electrodes with mercury or bismuth displayed well-defined, sharp and separate current peaks for Cd and Pb ions when the square-wave voltammetric potentials were applied. The peak currents measured with both mercury- and bismuth- coated GC electrodes were linearly proportional to Cd and Pb concentrations in the range of 1 to 200 ppb in 0.1 M $HNO_3$ with strong linear relationships between concentration and peak current ($R^2$ > 0.95), indicating that both of Cd and Pb ions could be quantitatively measured.

Chemically Modified Submicron Silica Particulate Extractants for Preconcentration of Mercury(II)

  • Kaur, Anupreet;Gupta, Usha
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1932-1936
    • /
    • 2008
  • A new analytical method using 1-(2-pyridylazo)-2-naphthol modified $SiO_2$ nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of mercury(II) in different water samples. Conditions of the analysis such as preconcentration time, effect of pH, sample volumes, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer $SiO_2$-PAN was found to be 260 ${\mu}molg^{-1}$ at optimum pH and the detection limit (3$\sigma$) was 0.48 ${\mu}gL^{-1}$. The extractant showed rapid kinetic sorption. The adsorption equilibrium of mercury(II) on nanometer $SiO_2$-PAN was achieved just in 5 mins. Adsorbed mercury(II) was easily eluted with 5 mL of 6 M hydrochloric acid. The maximum preconcentration factor was 50. The method was applied for the determination of trace amounts of mercury(II) in various water samples and industrial effluents.