Browse > Article
http://dx.doi.org/10.4014/jmb.1109.08022

Biosequestration, Transformation, and Volatilization of Mercury by Lysinibacillus fusiformis Isolated from Industrial Effluent  

Gupta, Saurabh (Department of Microbiology, Mata Gujri College)
Goyal, Richa (Department of Microbiology, Dolphin (PG) College of Life Sciences)
Nirwan, Jashan (Department of Microbiology, Mata Gujri College)
Cameotra, Swaranjit Singh (Institute of Microbial Technology)
Tejoprakash, Nagaraja (Department of Biotechnology and Environmental Sciences, Thapar University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 684-689 More about this Journal
Abstract
In the present study, an efficient mercury-tolerant bacterial strain (RS-5) was isolated from heavy-metalcontaminated industrial effluent. Under shake flask conditions, 97% of the supplemented mercuric chloride was sequestered by the biomass of RS-5 grown in a tryptone soy broth. The sequestered mercuric ions were transformed inside the bacterial cells, as an XRD analysis of the biomass confirmed the formation of mercurous chloride, which is only feasible following the reaction of the elemental mercury and the residual mercuric chloride present within the cells. Besides the sequestration and intracellular transformation, a significant fraction of the mercury (63%) was also volatilized. The 16S rRNA gene sequence of RS-5 revealed its phylogenetic relationship with the family Bacillaceae, and a 98% homology with Lysinibacillus fusiformis, a Gram-positive bacterium with swollen sporangia. This is the first observation of the sequestration and volatilization of mercuric ions by Lysinibacillus sp.
Keywords
Metal sequestration; biosorption; biotransformation; mercury; volatilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dudley, K. J., M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
2 Dzairi, F. Z., Y. Zeroual, A. Moutaoukkil, J. Taoufik, M. Talbi, M. Loutfi, et al. 2004. Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Ann. Microbiol. 54: 353-364.
3 Fitzgerald, W. F., C. H. Lamborg, and C. R. Hammerschmidt. 2007. Marine biogeochemical cycling of mercury. Chem. Rev. 107: 641-662.   DOI   ScienceOn
4 Jayasankar, D., A. Sarkar, and N. Ramaiah. 2006. Bioremediation of toxic substances by mercury resistant marine bacteria. J. Ecotoxicol. 15: 385-389.   DOI   ScienceOn
5 Joseph, S., P. S. Shanmugha, K. G. Seghal, T. Thangavelu, and B. N. Sapna. 2009. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol. Res. 164: 352-363.   DOI   ScienceOn
6 Lefebvre, D. D., D. Kelly, and K. Budd. 2007. Biotransformation of Hg(II) by cyanobacteria. Appl. Environ. Microbiol. 71: 243-249.
7 Liu, J., R. A. Goyer, and M. P. Waalkes. 2008. Toxic effects of metals, pp. 949-950. In C. D. Klassen (ed). Casarett and Doull's Toxicology: The Basic Science of Poisons, 7th Ed. McGraw-Hill, New York
8 Mendoza-Cozatl, D., H. Loza-Tavera, A. Hernandez-Navarro, and R. Moreno-Sanchez. 2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29: 653-671.   DOI   ScienceOn
9 Poulain, A. J., S. M. N. Chadhain, P. A. Ariya, M. Amyot, E. Garcia, P. G. C. Campbell, et al. 2007. Potential for mercury reduction by microbes in the high arctic. Appl. Environ. Microbiol. 73: 2230-2238.   DOI   ScienceOn
10 Altschul, S. F., L. M. Thomas, A. S. Alejandro, Z. Jinghui, Z. Zheng, M. Webb, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402.   DOI   ScienceOn
11 Barkay, T. and I. Wagner-Dobler. 2005. Microbial transformations of mercury: Potential challenges and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57: 1-52.
12 Benson, D. A., I. Karsch-Mizrachi, D. J. Lipmann, J. Ostell, and D. L. Wheeler. 2006. Gen-Bank. Nucl. Acids Res. 34: D16-D20.   DOI   ScienceOn
13 Calos, N. J., C. H. L. Kennard, and R. L. Davis. 1983. The structure of calomel, $Hg_2CI_2$, derived from neutron powder data. Z. Kristallogr. 187: 305-307.
14 Cole, J. R., B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, et al. 2007. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucl. Acids Res. 35: D169-D172.   DOI   ScienceOn
15 De Siloniz, M. I., L. Balsalobre, C. Alba, M. J. Valderrama, and J. M. Peinado. 2002. Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res. Microbiol. 153: 173-180.   DOI   ScienceOn
16 Dhankher, O. P., Y. Li, and B. P. Rosen. 2002. Engineering tolerance and hyper accumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20: 1140-1144.   DOI   ScienceOn
17 USEPA. 1996. Acid digestion of sediments sludges and soils. Method 3050-B. In: Methods for Chemical Analysis of Water and Wastes. USEPA, Washington, DC.
18 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.
19 Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.   DOI   ScienceOn
20 Ung, C. Y., S. H. Lam, M. M. Hlaing, C. L. Winata, S. Korzh, S. Mathavan, and Z. Gong. 2010. Mercury-induced hepatotoxicity in zebra fish: In vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genomics 11: 6-14.   DOI   ScienceOn
21 Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267.   DOI   ScienceOn
22 Warner, K. A., E. E. Roden, and J. Bonzongo. 2003. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ. Sci. Technol. 37: 2159-2165.   DOI   ScienceOn