• 제목/요약/키워드: memory coefficient

검색결과 129건 처리시간 0.04초

A Memory-Efficient VLC Decoder Architecture for MPEG-2 Application

  • Lee, Seung-Joon;Suh, Ki-bum;Chong, Jong-wha
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.360-363
    • /
    • 1999
  • Video data compression is a major key technology in the field of multimedia applications. Variable-length coding is the most popular data compression technique which has been used in many data compression standards, such as JPEG, MPEG and image data compression standards, etc. In this paper, we present memory efficient VLC decoder architecture for MPEG-2 application which can achieve small memory space and higher throughput. To reduce the memory size, we propose a new grouping, remainder generation method and merged lookup table (LUT) for variable length decoders (VLD's). In the MPEG-2, the discrete cosine transform (DCT) coefficient table zero and one are mapped onto one memory whose space requirement has been minimized by using efficient memory mapping strategy The proposed memory size is only 256 words in spite of mapping two DCT coefficient tables.

  • PDF

R2SDF FFT의 메모리 감소를 위한 회전인자 인덱스 생성방법 (Twiddle Factor Index Generate Method for Memory Reduction in R2SDF FFT)

  • 양승원;김용은;이종열
    • 대한전자공학회논문지SD
    • /
    • 제46권5호
    • /
    • pp.32-38
    • /
    • 2009
  • FFT(Fast Fourier Transform) 프로세서는 OFDM(Orthogonal Frequency Division Multiplexing) 시스템에서 사용된다. 근래에는 광대역과 이동성에 대한 요구가 높아짐에 따라 큰 포인트를 가지는 FFT 프로세서의 연구가 필요하다. FFT 포인트 수가 증가할수록 회전인자가 저장된 메모리가 차지하는 면적은 증가한다. 본 논문에서는 Radix-2, $2^2,\;2^3,\;2^4$ 알고리즘의 회전인자 인덱스 생성 방법을 제안한다. 제안한 회전인자 인덱스 생성기(Twiddle Factor Index Generator : TFIG)는 간단하게 카운터와 양수곱셈기로만 구성된다. 각각의 R2SDF(Radix-2 Single-Path Delay Feedback), $R2^2SDF,\;R2^3SDF,\;R2^4SDF$ 1024포인트 FFT 프로세서에 ROM 크기를 1/8N로 줄인 회전인자 계수 생성기(Twiddle Factor Coefficient Generator : TFCG)를 설계하여 제안한 알고리즘을 검증하였다. $R2^4SDF$의 TFCG 경우 면적, 전력에서 각 57.9%, 57.5%정도의 이득을 얻었다.

트랜지스터의 온도 계수를 고려한 커패시터리스 디램의 설계 최적화 (Design Optimization of Capacitor-less DRAM using zero-temperature coefficient point)

  • 김경희;김경민;김영환;임종범;최규호;강인만;윤영준
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.369-374
    • /
    • 2024
  • 본 논문에서는 차세대 메모리 기술로 주목받고 있는 커패시터리스 디램(one-transistor DRAM, 1T-DRAM)을 소자의 설계 최적화에 대해 다룬다. 기존 커패시터기반 DRAM의 한계를 해결하고자, 비대칭 듀얼 게이트 구조를 사용하여 보유 시간 및 성능을 향상시키는 방향성을 제시한다. ZTC(Zero-temperature coefficient) 지점을 1.25 V로 설정하여 온도 변화에 따른 성능 저하를 최소화하였다. 다양한 온도(300K~400K)에서 전류-전압 특성을 분석하여, ZTC 지점에서의 메모리 특성이 온도에 안정적으로 동작하는 것을 확인하였으며, 고온에서도 신뢰성 있는 동작을 보장하는 설계가 가능함을 입증하였다. 이를 통해 1T-DRAM 소자는 높은 신뢰성과 고효율을 갖춘 메모리 기술로서, 차세대 메모리 소자 개발에 중요한 기여를 할 수 있다.

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.

Effect of generalized thermoelasticity materials with memory

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.597-611
    • /
    • 2007
  • Many works have been done in classical theory of thermoelasticity in materials with memory by researchers like Nunziato, Chen and Gurtine and many others. No work is located in generalized thermoelasticity regarding materials with memory till date. The present paper deals with the wave propagation in materials with memory in generalized thermoelasticity. Plane progressive waves and Rayleigh waves have been discussed in details. In the classical theory of heat conduction it was observed that heat propagates with infinite speed. This paradox has been removed in the present discussion. The set of governing equations has been developed in the present analysis. The results of wave velocity and attenuation coefficient corresponding to low and high frequency have been obtained. For thermal wave the results show appreciable differences with those in the usual thermoelasticity theory.

메모리 반도체 회로 손상의 예방을 위한 패키지 구조 개선에 관한 연구 (Appropriate Package Structure to Improve Reliability of IC Pattern in Memory Devices)

  • 이성민
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.32-35
    • /
    • 2002
  • The work focuses on the development of a Cu lead-frame with a single-sided adhesive tape for cost reduction and reliability improvement of LOC (lead on chip) package products, which are widely used for the plastic-encapsulation of memory chips. Most of memory chips are assembled by the LOC packaging process where the top surface of the chip is directly attached to the area of the lead-frame with a double-sided adhesive tape. However, since the lower adhesive layer of the double-sided adhesive tape reveals the disparity in the coefficient of thermal expansion from the silicon chip by more than 20 times, it often causes thermal displacement-induced damage of the IC pattern on the active chip surface during the reliability test. So, in order to solve these problems, in the resent work, the double-sided adhesive tape is replaced by a single-sided adhesive tape. The single-sided adhesive tape does net include the lower adhesive layer but instead, uses adhesive materials, which are filled in clear holes of the base film, just for the attachment of the lead-frame to the top surface of the memory chip. Since thermal expansion of the adhesive materials can be accommodated by the base film, memory product packaged using the lead-flame with the single-sided adhesive tape is shown to have much improved reliability. Author allied this invention to the Korea Patent Office for a patent (4-2000-00097-9).

  • PDF

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.

형상기억입자 강화 복합체의 탄성계수 평가 (Evaluation of Elastic Modulus in a Particulate Reinforced Composite by Shape Memory Effect)

  • 김홍건
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.25-31
    • /
    • 2001
  • The theoretical modeling to predict the modulus of elasticity by the shape memory effect of dispersed particles in a metal matrix composite was studied. The modeling approach is based on the Eshelbys equivalent inclusion method and Mori-Tanakas mean field theory. The calculation was performed on the TiNi particle dispersed Al metal matrix composites(PDMMC) with varying volume fractions and prestrains of the particle. It was found that the prestrain has no effect on the Yonugs modulus of PDMMC but the volume fraction does affects it. This approach has an advantage of definite control of Youngs modulus in PDMMCs.

전달강성계수법과 유한요소법의 조합에 의한 사각평판의 자유진동해석 (Free Vibration Analysis of Rectangular Plates by the Combined Transfer Stiffness Coefficient Method and Finite Element Method)

  • 문덕홍;최명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.353-358
    • /
    • 1998
  • In general, we have used the finite element method(FEM) to find natural frequencies of plates. In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for finding natural frequencies of plates correctly. Therefore it was very difficult to analyze the free vibration of plates correctly on personal computer. For overcoming this disadvantage of the FEM, the authors have developed the finite element-transfer stiffness coefficient method(FE-TSCM) which is based on the concept of modeling techniques in the FEM and the transfer of the stiffness coefficient in the transfer stiffness coefficient method. In this paper, we formulate free vibration analysis algorithm of rectangular plates using the FE-TSCM. Some numerical examples of rectangular plates are proposed, and their results and computation times obtained by the FE-TSCM are compared with those by the FEM and the finite element-transfer matrix method in order to demonstrate the accuracy and efficiency of the FE-TSCM.

  • PDF

동강계수의 전달에 의한 복잡 거대한 격자형 구조물의 진동해석 (Vibration Analysis for a Complex and Large Lattice Type Structure Using Transfer Dynamic Stiffness Coefficient)

  • 문덕홍;최명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.190-195
    • /
    • 1997
  • Recently it is increased by degrees to construct complex or large lattice type structures such as bridges, towers, cranes, and structures that can be used for space technology. In general, in order to analyze, these structures we have used the finite element method(FEM). In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for solving dynamic problems for these structures. For overcoming this problem, the authors have developed the transfer dynamic stiffness coefficient method(TDSCM). This method is based on the concepts of the transfer and the synthesis of the dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the dynamic stiffness coefficient. And the validity of TDSCM demonstrated through numerical computational and experimental results.

  • PDF