• Title/Summary/Keyword: membrane structures

Search Result 692, Processing Time 0.024 seconds

Cyling Load Test of Architectural Glass Fiber Membrane (건축용 유리섬유 막재의 반복하중 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee;Lee, Jang-Bok;Jun, Woo-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.31-36
    • /
    • 2008
  • Architectural membrane are now used in the roof of large span structures throughout the world with the merits of free shape and lightness. Some membrane have some problems of structural capacity by the wind or snow load conditions, large span structures was shown to the tearing of the membrane. This paper is the experimental test on the stress strain curve of cycling load for the glass fiber membrane. In the result of stress strain relationship curve by the cycling load, glass fiber membrane was reduced the tensile strength, the polyester membrane was shown to occur the increase of displacement without load reduction in each load step.

  • PDF

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Damping Identification Analysis of Membrane Structures under the Wind Load by Wavelet Transform

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, we take advantage of Wavelet Transform to identify damping ratios of membrane structures under wind action. Due to the lightweight and flexibility of membrane structures, they are very sensitive to the wind load, and show a type of fluid-structure interaction phenomenon simultaneously. In this study, we firstly obtain the responses of an air-supported membrane structure by ADINA with the consideration of this characteristic, and then conduct Wavelet Transform on these responses. Based on the Wavelet Transform, damping ratios could be obtained from the slope of Wavelet Transform in a semi-logarithmic scale at a certain dilation coefficient. According to this principle, damping ratios could eventually be obtained. There are two numerical examples in this study. The first one is a simulated signal, which is used to verify the accuracy of the Wavelet Transform method. The second one is an air-supported membrane structure under wind action, damping ratios obtained from this method is about 0.05~0.09. The Wavelet Transform method could be regarded as a very good method for the the damping analysis, especially for the large spatial structures whose natural frequencies are closely spaced.

A Study on the Shape Analysis of Membrane Structures Using Line Elements (선재 요소를 이용한 막 구조물의 형상해석에 관한 연구)

  • Kim, Seung-Deog;Lee, Shin-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.45-60
    • /
    • 2010
  • Nonlinear problems for membrane structures are very sensitive in convergence procedure in nonlinear iterations. Therefore many researchers have suggested a lot of ideas in published papers. In this study, authors are trying to get easier solution for taking membrane shape by initial stresses from substitution of the membrane to line elements. To obtain nonlinear stiffness, the nonlinear finite element method is used for both membrane and cable elements, and only geometric nonlinear terms are taken for shape analysis. By some examined models, we can find that the substituted models show better results to get, initial shape in which the concentrating phenomenon is removed at edge parts.

  • PDF

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

An Experimental Study on Monitoring Damages of Membrane Materials Using Lead Switch Sensors and Radio Frequency (리드스위치 센서와 무선주파수를 이용한 막재료의 손상 모니터링에 관한 연구)

  • Kim, Dong-Hyun;Kim, Tae-Gon;Suk, Chang-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.83-90
    • /
    • 2013
  • PTEF membranes are used for roofing materials of membrane structures. PTEF is the abbreviation of Poly-tetra Fluotide-ethylene. These materials are consisted of fiberglass weave and polyetrfluoroethylene coating. Also, PTEF membranes have some problems of structural capacity by wind or snow load, etc. In this study, sensor housings using lead switches are bonding in PTFE membranes, Monitoring to changes tension and tear damages are studied using radio frequency. If tension is received on edged membranes, bonded lead switches of sensor housings will be destroyed by changes tension, and these become to send signals of damages at the connected radio frequency system with increased tension. Study of these functional membrane materials will be contributed to prevent water leakage and long-term maintenance of membrane structures.

Basic Test on the Mechanical Characteristics of Polyester Membrane (폴리에스터 막재의 역학적 특성에 관한 기초시험)

  • Park, Kang-Geun;Yoon, Seoung-Hyun;Lee, Jang-Bok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • Membrane structures are now used in various ways throughout the world with the merits of free shape, lightness, durability, sunlight transmittance and homogeneous material. The development of new membrane material opened up new possibility for the design of new building structures. Recently it was mainly used PVC, PVF, PVDF, PTFE, ETFE membrane for using the roofing material of membrane structures. Some problems of architectural membrane have fire proofing, lack of strength, tear resistance, durability and elasticity. For the estimation of this problems, it will be tested the basic mechanical properties of membrane material about tensile strength, tearing resistance and repeated loading behavior. Elastic modulus is 337.30~1257.63N/$mm^2$, and strain is 17.90~26.91%.

  • PDF

Tests of Fire and Flame Retardant Performance for Membrane Materials (막재료의 난연 및 방염성능 실험에 대한 연구)

  • Kim, Gee-Cheol;Choi, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2016
  • The Membrane structure has a number of problems in the application of a fireproof code based on general buildings codes. Thus, the fireproof code of membrane structure is necessary to activate the construction of the membrane structure. Because it requires a systematic classification of fire retardant and flame proof performance of membrane material. Fire retardant and flame proof tests are conducted on membrane materials mostly used in current construction to propose the fire and flame retardant performance criteria of membrane materials. Fire and flame retardant tests results, PTFE membrane material with the glass fiber fabric have a limit-combustible performance. PVDF membrane material with the polyester fabric does not ensure the fire retardant performance, but this membrane material has the flame retardant performance of a thick fabric. Also, ETFE does not ensure the fire retardant performance, but this membrane material has the flame retardant of a thin fabric.

Determination of the Actual Equilibrium Shape Finding and Optimum Cutting Pattern for Membrane Structures (막구조물의 준공평형형상해석 및 최적재단도 결정)

  • Lee, Jang-Bog;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-166
    • /
    • 2001
  • In general, the cutting pattern of the membrane structures is determined by dividing the complicated curved 3-D surface into several 2-D plane strip by using flattening technique. In this procedure, however, some discrepancies ore occurred between actual stresses of equilibrated state and designed uniform stresses because the material properties are not considered. These deviations can cause the critical structural problems, wrinkling or overstress, and thus a optimization process should be considered. In this paper, a new analytical method for determining an optimum cutting pattern considering material properties is presented. Here, iterative procedure is introduced to decrease the errors caused in numerical process. The optimization method proposed can diminish the deviations occurred by material properties and numerical errors, simultaneously. As a results, it is shown that the final stress distributions for the HP shell model are sufficiently near to design stress distributions, and it can be concluded that this method can be used to obtain the optimized cutting pattern of membrane structures.

  • PDF

Nonlinear Analysis of Curved Cable-Membrane Roof Systems (굴곡형 케이블-막 지붕 시스템의 비선형 해석)

  • Park, Kang-Geun;Kwun, Ik-No;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.