• Title/Summary/Keyword: membrane deformation

Search Result 215, Processing Time 0.029 seconds

Optimization of Physical Conditions for Caviar Analog Preparation Using Calcium-alginate Gel Capsules

  • Ji, Cheong-Il;Cho, Sueng-Mock;Yun, Young-Soo;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.103-112
    • /
    • 2007
  • High prices, overfishing, and contamination have limited the availability of natural caviar as a food product. We attempted to apply encapsulation by calcium-alginate gel membranes to caviar analog preparation in an effort to produce a high-quality replacement for natural caviar. Physical conditions of stirring speed $(X_1,\;rpm)$ and gelation time $(X_2,\;min)$ as the independent variables for gelation were optimized by response surface methodology. Sphericity $(Y_1,\;%)$, diameter $(Y_2,\;mm)$, membrane thickness $(Y_3,\;mm)$, rupture strength $(Y_4,\;g)$, and rupturing deformation $(Y_5,\;mm)$ were used as the dependent variables to compare characteristics of the capsules for caviar analogs with natural caviar. The values of the independent variables as evaluated by multiple response optimization were $X_1=-0.1271 (278 rpm) and $X_2=0.4436$ (12.2 min), respectively. Predicted values of the four dependent variables were $Y_1=97.7%,\;Y_2=2.97mm,\;Y_4=1,465g,\;and\;Y_5=1.15mm$. Membrane thickness $(Y_3)$ was eliminated from the dependent variables for multiple response optimization because it could not be measured with an image analyzer. The experimental values prepared under the optimal conditions for verification nearly coincided with the predicted values and satisfied the conditions of natural caviar.

Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures (강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용)

  • Seo, Seung Il;Lim, Seong Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.76-84
    • /
    • 1997
  • At the initial design stage, for rapid evaluation of strength of ship structures, finite element analysis using beam elements is carried out in general. In beam modeling of ship structures, brackets are usually represented by rigid elements to simplify the analysis. Extent of rigid ends, which is called as a span point, can be determined from the three kinds of view points, i.e., bending, shearing and axial deformation. In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane elements. And also, the proposed semi 3-dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the semi 3-dimensional method is revealed to have good computing efficiency due to unnecessity of elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF

Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites (표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성)

  • Jung, Sunghee;Song, Jeomsik;Kim, Guoosuk;Lee, Sukmin;Mun, Museong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Simulation of Membrane Sloshing Tank by Using MPS (입자법을 이용한 멤브레인 타입 슬로싱 시뮬레이션)

  • Kim, Kyung Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.117-122
    • /
    • 2019
  • In the field of fluid dynamics, the sloshing effects are most common and significant problem. It is usually appeared in the tank filled with fluid which is on the main structure, thus, sloshing effects and its impact load may affect to entire system. For the sloshing effects analysis, impact loads due to tank motion is generally investigated theocratically, experimentally and numerically. The difficulty of sloshing phenomenon is non-linearity induced by large deformation at the free-surface. In this regard, it is well known issue that the repeatability on the sloshing problems is very low. In this study, moving particle semi-implicit method was employed to simulate sloshing problem and then the results were compared with corresponding experiments captured by high accuracy high speed camera. The results from numerical simulation was compared to experimental results.

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces (이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Kim, Hye-In;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.86-93
    • /
    • 2022
  • Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.

A Study on 8-Stage Loading Method of the Scaffolding Module for LNG Carriers (LNG 운반선 비계 모듈의 8단 탑재 방안 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.78-85
    • /
    • 2020
  • The scaffolding system, which is a construction workbench of the cargo containment for a membrane LNG carrier, is a large truss structure composed of various members. To shorten the installation period and process of the scaffolding system, it is effective to enlarge the mounting unit from the existing two stages to eight stages. Owing to the increase in lifting load according to the large size of the module, the stresses around the pin and hole will be increased significantly. In this study, a tensile strength test and contact stress analysis were performed to confirm the structural safety. The relatively large hole deformation was observed visually near the average load generated in the vertical pipe at the top through tensile strength tests. A contact stress calculation confirmed the stress distribution around the hole. The contact problem was dealt with in terms of the Herzian contact stress. The possibility of 8-stage loading was examined by comparing the yield strength and contact stresses of failure critical locations. As a result, the 8-stage loading method of the existing scaffolding material was inadequate, and a new loading method with proper safety is proposed.

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-ll;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.