DOI QR코드

DOI QR Code

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces

이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석

  • Kim, Hye-In (Department of Smart Vehicle System Engineering, Chosun University) ;
  • Chae, Bong-Geon (STEP Lab Ltd.) ;
  • Oh, Hyun-Ung (Department of Smart Vehicle System Engineering, Chosun University)
  • 김혜인 (조선대학교 스마트이동체융합시스템공학부 우주기술융합연구실) ;
  • 채봉건 ((주)스텝랩) ;
  • 오현웅 (조선대학교 스마트이동체융합시스템공학부 우주기술융합연구실)
  • Received : 2022.07.21
  • Accepted : 2022.08.24
  • Published : 2022.10.31

Abstract

Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.

우주용 전개형 메쉬 안테나는 궤도 운용 시 RF 성능을 보장하기 위해 극한의 궤도 열 환경 하에서 극심한 온도변화에 의한 열변형을 최소화할 수 있는 열설계가 필수적이다. 일반적으로 궤도 상에서 전력 생성을 위해 전개형 태양전지판이 주로 적용되고 있으나, 태양전지판으로 인한 그림자로 인해 안테나 표면에 극심한 온도구배가 발생할 수 있다. 본 논문에서는 전개형 메쉬 안테나 후면부에 멤브레인 시트를 적용하고, 시트 후면부에 유연 태양전지셀을 부착하여 전개형 태양전지판으로 인한 온도구배를 최소화할 수 있는 이중막 구조의 설계 방식을 제안하였다. 제안된 안테나 열설계의 유효성을 검증하기 위해 궤도 열해석을 통해 안테나 표면에서 발생하는 온도구배 분석을 수행하였다.

Keywords

Acknowledgement

본 연구는 2020년도 과학기술정보통신부의 재원으로 한국연구재단 스페이스챌린지 사업의 지원을 받아 수행되었음(NRF-2020M1A3B8084734).

References

  1. K. J. Lee, K. Y. Oh and T. B. Chae, "Development and Application Status of Microsatellites," Current Industrial and Technological Trends in Aerospace, vol. 17 no. 2, pp. 113-124, Dec. 2019.
  2. Logue, T. J. and Pelton, J, "Overview of Commercial Small Satellite Systems in the "New Space" Age," Handbook of Small Satellites, Springer Nature, Switzerland, 2019.
  3. Ince F., "Nano and micro satellites as the pillar of the "new space" paradigm," Journal of Aeronautics and Space Technologies, vol. 13 no. 2, pp. 235-250, July 2020.
  4. Sun Z., Zhang Y. and Yang D., "Structural Design, Analysis, and Experimental Verification of an H-style Deployable Mechanism for Large Space-borne Mesh Antennas," Acta Astronautica, vol. 178, pp. 481-498, Jan. 2021. https://doi.org/10.1016/j.actaastro.2020.09.032
  5. Thomson M K, "AstroMesh deployable reflectors for Ku- and Ka- band commercial satellites," 20th AIAA International Communication Satellite Systems Conference and Exhibit, Montreal, Quebec, Canada, AIAA-2002-2032, May 2002.
  6. https://i-qps.net/
  7. https://umbra.space/
  8. https://www.capellaspace.com/
  9. J. H. Han, S. H. Yun, J. H. Park, and S. P. Lee, "Development and test procedures for communications and broadcasting satellite antennas," Proceeding of The Korean Society for Aeronautical and Space Sciences 2001 Spring Conference, pp. 532-535, Jeju, Korea, April 2001.
  10. L'Abbate M, Germani C, Torre A, Campolo G, Cascone D, Bombaci O, Soccorsi M, Iorio M, Varchetta S, and Federici S "Compact SAR and micro satellite solutions for Earth observation,". 31st space symposium, Colorado, USA, pp. 1-17, April 2015.
  11. Wang P, Wang F, Shi T, and Wang B "Thermal distortion compensation of a high precision umbrella antenna," Journal of Physics: Conference Series, Taiyuan, China, pp. 1-8, Oct. 2017.
  12. Reznik S. V., Prosuntsov P. V., and Novikov A. D. "Comparison of space antennas mirror refectors parameters made of composite materials," MATEC Web of Conference, vol. 110, pp. 1-4, June 2017.
  13. T. Y. Park, S. Y. Kim, D. W. Yi, H. Y. Jung, J. E. Lee, J. H. Yun, and H. U. Oh, "Thermal design and analysis of unfurlable CFRP skin-based parabolic reflector for spaceborne SAR antenna," International Journal of Aeronautical and Space Sciences, vol. 22 no. 2, pp. 433-444, April 2021. https://doi.org/10.1007/s42405-020-00301-7
  14. Gottero, M., Sacchi, E., Scialino, G. L., Reznik, S. V., and Kalinin, D. Y. "The large deployable antenna (LDA) a review of thermal aspects," 35th International Conference on Environmental Systems, Roma, Italy, July 2005.
  15. W. Guo, Y. Li, Y.Z. Li, S. Tian, and S. Wang, "Thermal-structural analysis of large deployable space anenna under extreme heat loads," Journal of Thermal Stresses, vol. 39 no. 8, pp. 887-905, Jun 2016. https://doi.org/10.1080/01495739.2016.1189776
  16. J. H. Choi, "Development Trends of Solar Cell Technologies for Small Satellite," Journal of the Korea Academia-Industrial Cooperation Society, vol. 22 no. 5, pp. 310-316, May 2021. https://doi.org/10.5762/KAIS.2021.22.5.310
  17. Thermal Desktop User's Guide, Ver. 6.1; Network Analysis Associates: Tempe, AZ, USA, 2006.
  18. SINDA/FLUINT User's Guide, Ver. 6.1; Network Analysis Associates: Tempe, AZ, USA, 2006.
  19. Bettermann, I., Locken, H., Greb, C., Gries, T., Oses, A., Pauw, J., Maghaldadze, N., and Datashvili, L. "Review and evaluation of warp-knitted patterns for metal-based large deployable refector surfaces," CEAS Space Journal, pp. 1-17, June 2022.