DOI QR코드

DOI QR Code

Simulation of Membrane Sloshing Tank by Using MPS

입자법을 이용한 멤브레인 타입 슬로싱 시뮬레이션

  • Kim, Kyung Sung (School of Naval Architecture and Ocean Engineering, Tongmyong University)
  • 김경성 (동명대학교 조선해양공학부)
  • Received : 2019.08.02
  • Accepted : 2019.10.20
  • Published : 2019.10.28

Abstract

In the field of fluid dynamics, the sloshing effects are most common and significant problem. It is usually appeared in the tank filled with fluid which is on the main structure, thus, sloshing effects and its impact load may affect to entire system. For the sloshing effects analysis, impact loads due to tank motion is generally investigated theocratically, experimentally and numerically. The difficulty of sloshing phenomenon is non-linearity induced by large deformation at the free-surface. In this regard, it is well known issue that the repeatability on the sloshing problems is very low. In this study, moving particle semi-implicit method was employed to simulate sloshing problem and then the results were compared with corresponding experiments captured by high accuracy high speed camera. The results from numerical simulation was compared to experimental results.

슬로싱 현상은 현상의 특성인 격렬한 자유표면을 가지는 유동 문제뿐만 아니라, 슬로싱이 발생하는 유체 탱크가 부유체 혹은 어떠한 물체에 탑재되어 전체 시스템에 영향을 줄 수 있다는 것이 가장 큰 논의점이다. 이러한 이유로 일반적인 슬로싱에 대한 해석은 탱크의 움직임에 의한 내부 유동의 발생, 그리고 그로 인해 야기되는 충격하중의 해석이 주를 이룬다. 이러한 슬로싱 현상은 비선형성이 강하며 자유표면에서의 대-변형이 발생한다. 매우 높은 비선형성으로 인해 실험에서는 재현성이 낮고, 수치 시뮬레이션에서는 정확도가 낮다는 것이 지속적으로 문제시 되어 왔다. 본 연구에서는 높은 정확도를 가지는 카메라 비전 기술을 이용한 실험과 입자법을 이용한 시뮬레이션을 비교하였다. 탱크의 주요 제원을 통해 구해진 고유 주기와 그 주변 주기를 가지는 운동에서의 슬로싱 현상을 수치적으로 시뮬레이션 하였으며, 비교를 통해 탱크 내 슬로싱 하중을 분석하였다.

Keywords

References

  1. N. A. Hamlin. (1990). Liquid Slosh Loading in Slack Ship Tanks: Forces on Internal Structure and Pressures (No. SSC-336)
  2. X. Kang, S. Rakheja & and I. Stiharu. (2002). Cargo Load Shift and Its Influence on Tank Vehicle Dynamics under Braking and Turning. Int. J. Heavy Veh. Syst., 9(3), 173-203. https://doi.org/10.1504/IJHVS.2002.001175
  3. H. N. Abramson. (1966). The Dynamic Behavior of Liquids in Moving Containers, with Applications to Space Vehicle Technology, Tech. Rep. NASA-SP-106, NASA.
  4. O. M. Faltinsen. (1974). A Nonlinear Theory of Sloshing in Rectangular Tanks. J. Sh. Res., 18(4), 224-241. https://doi.org/10.5957/jsr.1974.18.4.224
  5. Z. Kishev, C. Hu, & M. Kashiwagi. (2006) Numerical simulation of violent sloshing by a CIP-Based Method. J. Mar. Sci. Technol. 11(2), pp. 111-122 https://doi.org/10.1007/s00773-006-0216-7
  6. H. C. Chen. (2011). CFD Simulation of compressible two-phase sloshing flow in a LNG Tank. Ocean Systems Engineering, 1(1) pp.29-55
  7. J. H. Hong (2019). Performance Prediction of Mud Pump using CFD Analysis, Korean Society of Mechanical Technology, 21(3), pp. 418-424 https://doi.org/10.17958/ksmt.21.3.201906.418
  8. W. J. Lee, J. H. Kim & J. K. Yoon (2018) A study on heat flow characteristics of Forced Convection in a Helical Tube Heat Exchanger using CFD, Korean Society of Mechanical Technology, 20(2), pp. 166-173 https://doi.org/10.17958/ksmt.20.2.201804.166
  9. J .J. Monaghan & Kocharyan. (1995) SPH simulation of multi-phase flow. Computer Physics Communications, 87(1-2), pp. 225-235 https://doi.org/10.1016/0010-4655(94)00174-Z
  10. X. Y. Hu & N. A. Adams (2006). A Multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213(2), pp.844-861 https://doi.org/10.1016/j.jcp.2005.09.001
  11. S. Koshizuka & Y. Oka. (1996). Moving Particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123(3), pp. 421-434 https://doi.org/10.13182/NSE96-A24205
  12. M. Tanaka & T. Masunaga. (2010). Stabilization and smoothing of pressure in MPS method by Quasi-compressibility. Journal of Computational Physics, 229(11), pp. 4279-4290 https://doi.org/10.1016/j.jcp.2010.02.011
  13. B. H. Lee, J. C. Park, M. H. Kim & S. C. Hwang. (2011). Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods in Applied Mechanics and Engineering, 200(9-12), 1113-1125 https://doi.org/10.1016/j.cma.2010.12.001
  14. K. S. Kim & S. J. Yu (2019). A study on Initial Wave Breaker by Using MPS and Stereo Vision Technology Journal of The Korea Convergence Society, 10(2), 201-206. https://doi.org/10.15207/JKCS.2019.10.2.201
  15. K. S. Kim, M. H. Kim & J. C. Park. (2014). Development of moving particle simulation method for multiliquid-layer sloshing. Mathematical Problems in Engineering, 350165. DOI :10.1155/2014/350165
  16. K. S. Kim. (2018) A mesh-free particle Method for simulation of mobile-bed behavior induced by dam break. Applied Sciences, 2018(8), 1070. DOI :10.3390/app8071070
  17. S. Kim, Y. Kim, J. Park & B. Kim. (2016). Experimental Study of Sloshing Load on LNG Tanks for Unrestricted Filling Operation. Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference, (pp. 980-987). Rhodes, Greece : International Society of Offshore and Polar Engineers.