• Title/Summary/Keyword: membrane charge

Search Result 207, Processing Time 0.037 seconds

Effect of Force-field Types on the Proton Diffusivity Calculation in Molecular Dynamics (MD) Simulation (분자동역학 전산모사에서 force-field의 종류가 수소이온 확산도 계산에 미치는 영향)

  • Lee, Ji Hyun;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.358-366
    • /
    • 2017
  • The most important factor in the performances of polymer electrolyte membranes for fuel cells is how fast hydrogen ions can be transported along the water channel formed inside the electrolyte membrane. Since the morphology of the water channel and the diffusivity of the protons are very important factors for the proton transport behavior, various molecular dynamics simulation studies are being carried out to clarify this. The force-field is an important variable parameterizing the movement and interaction of each atom in molecular dynamics simulation. In this study, proton diffusivities of the 3D models of polymer electrolyte membranes were calculated in order to analyze the effects of various types of force-fields on the molecular simulation. It has been found that the charge value determining the non-bonding interaction plays a very important role in the formation of the water channel morphology, and the COMPASS force-field can calculate the accurate proton diffusion behavior. Accordingly, for molecular dynamics simulation of polymer electrolyte membranes, the proper selection of the force-field is very important due to its great effect on the proton diffusion as well as the final molecular structure.

Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성)

  • Jung, Jae-Chul;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.593-598
    • /
    • 2011
  • The IPA-co-HDO-co-(TPA/MA) copolymers for all-vanadium redox flow battery were synthesized by melt condensation polymerization using isophthalic acid(IPA), 1,6-hexandiol (HDO), terephthalic acid(TPA) and maleic anhydride(MA). The amination of chloromethylated IPA-co- HDO-co-(TPA/MA)(CIHTM) copolymer was carried out using trimethylamine, and the anion exchange membrane was also prepared by UV crosslinking reaction. The structure and thermal stability of IHTM copolymers were confirmed by FTIR, $^1H$ NMR, and TGA analysis. The anion membrane properties such as water uptake, ion exchange capacity, electric resistance and electrical conductivity, were measured by gravimetry, titration and LCR meter. The efficiency of the all-vanadium redox flow battery was analyzed. The ion exchange capacity, electric resistance and electrical conductivity were 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, and 0.009 S/cm, respectively. The efficiency of charge-discharge, voltage, and energy for the allvanadium redox flow battery were 96.5, 74.6, 70.0%, respectively.

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor (전기화학 캐퍼시터용 PVC기반 가교 음이온교환 멤브레인의 제조 및 특성)

  • Kim, Young-Ji;Kim, Soo-Yeoun;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.903-913
    • /
    • 2021
  • Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).

Optical detection of protein patterns using 1,3-bisdicyanovinylindane (1,3-bisdicyanovinylindane을 이용한 단백질 패터닝의 광학적 감지)

  • Park, Young-Min;Lee, Ji-Hye;Lee, Chang-Soo;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • In this study, we have obtained the protein patterns using the membrane patterning of soft-lithography technique. The rapid detection of protein including bovine serum albumin (BSA) was resulted from the interaction with 1,3-bisdicyanovinylindane. For the proof of the interaction between BSA and dye, the UV-vis absorption spectra of BSA and dye were observed at 278 nm and 580 nm, respectively. As expected, the absorption spectrum of the interaction between BSA and dye was observed at 584nm. The absorption spectrum of the interaction was red-shifted. In addition, the optical images of the selectively reacted protein patterns showed the distinctive change of patterned color at different pH conditions. Because the dye has negative charges, the charge of BSA at different pH conditions could influence the interaction behavior between dye and BSA. Therefore, in the case of pH 7, the selectively patterned protein substrates obtained deep blue color pattern caused by electrostatic interaction between negative charges of the dye and positive charges of the BSA. However, in the case of pH 10, selectively patterned protein substrates obtained light blue color pattern because the electrostatic interaction was relatively lower than pH 7 due to the change of overall charge distribution of BSA.

Electrochemical Impedance Characteristics of a Low-Temperature Single Cell for CO2/H2O Co-Reduction to Produce Syngas (CO+H2)

  • Min Gwan, Ha;Donghoon, Shin;Jeawoo, Jung;Emilio, Audasso;Juhun, Song;Yong-Tae, Kim;Hee-Young, Park;Hyun S., Park;Youngseung, Na;Jong Hyun, Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.462-471
    • /
    • 2022
  • In this study, the electrochemical impedance characteristics of CO2/H2O co-reduction to produce CO/H2 syngas were investigated in a low-temperature single cell. The effect of the operating conditions on the single-cell performance was evaluated at different feed concentrations and cell voltages, and the corresponding electrochemical impedance spectroscopy (EIS) data were collected and analyzed. The Nyquist plots exhibited two semicircles with separated characteristic frequencies of approximately 1 kHz and tens of Hz. The high-frequency semicircles, which depend only on the catholyte concentration, could be correlated to the charge transfer processes in competitive CO2 reduction and hydrogen evolution reactions at the cathodes. The EIS characteristics of the CO2/H2O co-reduction single cell could be explained by the equivalent circuit suggested in this study. In this circuit, the cathodic mass transfer and anodic charge transfer processes are collectively represented by a parallel combination of resistance and a constant phase element to show low-frequency semicircles. Through nonlinear fitting using the equivalent circuit, the parameters for each electrochemical element, such as polarization resistances for high- and low-frequency processes, could be quantified as functions of feed concentration and cell voltage.

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon;Chen, Ching-Lung;Johnston, Murray V.;Wang, Gen Suh;Huang, Chin-Pao
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2022
  • To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

Electrode Characteristics of K+ Ion-Selective PVC Membrane Electrodes with AC Impedance Spectrum (AC 임피던스 분석법을 이용한 K+ 이온선택성 PVC막 전극 특성)

  • Kim, Yong-Ryul;An, Hyung-Hwan;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.870-877
    • /
    • 1998
  • With impedance spectrum measurements, impedance was studied in the interface between sample solutions for $K^+-ion$ selective PVC membrane electrode containing neutral carriers [dibenzo-18-crown-6 (D18Cr6) and valinomycine (Val)]. Response characteristics of electrode were examined by measuring AC impedance spectra that were resulted from the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, doping of base electrolytes, and concentration variation of sample solution. Transport characteristics of PVC membrane electrode were also studied. It was found that the equivalent circuit for the membrane in $K^+$ solution could be expressed by a series combination of solution resistance and a parallel circuit consisting of the bulk resistance and geometric capacitance of the membrane system. But the charge transfer resistance and Warburg resistance were overlapped a little in the low concentration and low frequency ranges. The carrier, D18Cr6 was best for electrode and impedance characteristics, and ideal electrode characteristics were appeared especially in case of doping of the base electrolyte[potassium tetraphenylborate(TPB)]. The optimum carrier content was about 3.23 wt% in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the impedance characteristics was improved, but electrode characteristics were lowered for membrane thickness below the optimum. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

A Highly Selective Mercury(II) Ion-Selective Membrane Sensor (고 선택성 수은(II) 이온 막 센서)

  • Ensafi, Ali A.;Meghdadi, S.;Allafchian, Ali R.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.324-330
    • /
    • 2007
  • A new ion selective PVC membrane electrode is developed as a sensor for mercury(II) ions based on bis(benzoylacetone) propylenediimine (H2(BA)2PD) as an ionophore. The electrode shows good response characteristics and displays, a linear Emf vs. log[Hg2+] response over the concentration range of 1.0×10-6 to 1.0×10-1 M Hg(II) with a Nernstian slope of 29.8±0.75 mV per decade and with a detection limit of 2.2×10-7 M Hg(II) over the pH range of 2.5-11.5. Selectivity concentrations for Hg(II) relative to a number of potential interfering ions were also investigated. The sensor is highly selective for Hg(II) ions over a large number of cations with different charge. The sensor has been found to be chemically inert showing a fast response time of 60 s and was used over a period of 3 months with a good reproducibility (S = 0.27 mV). The electrode was successfully applied to determine mercury(II) in real samples with satisfactory results.

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Development of a Durable Startup Procedure for PEMFCs (고분자전해질 연료전지 내구성 향상을 위한 시동 기술 개발에 관한 연구)

  • Kim, Jae-Hong;Jo, Yoo-Yeon;Jang, Jong-Hyun;Kim, Hyung-Juhn;Lim, Tae-Hoon;Oh, In-Hwan;Cho, Eun-Ae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.288-294
    • /
    • 2009
  • Various polymer electrolyte membrane fuel cell (PEMFC) startup procedures were tested to explore possible techniques for reducing performance decay and improving durability during repeated startup-shutdown cycles. The effects of applying a dummy load, which prevents cell reversal by consuming the air at the cathode, on the degradation of a membrane electrode assembly (MEA) were investigated via single cell experiments. The electrochemical results showed that application of a dummy load during the startup procedure significantly reduced the performance decay, the decrease in the electrochemically active surface area (EAS), and the increase in the charge transfer resistance ($R_{ct}$), which resulted in a dramatic improvement in durability. After 1200 startup-shutdown cycles, post-mortem analyses were carried out to investigate the degradation mechanisms via various physicochemical methods including FESEM, an on-line $CO_2$ analysis, EPMA, XRD, FETEM, SAED, FTIR. After 1200 startup-shutdown cycles, severe Pt particle sintering/agglomeration/dissolution and carbon corrosion were observed at the cathode catalyst layer when starting up a PEMFC without a dummy load, which significantly contributed to a loss of Pt surface area, and thus to cell performance degradation. However, applying a dummy load during the startup procedure remarkably mitigated such severe degradations, and should be used to increase the durability of MEAs in PEMFCs. Our results suggest that starting up PEMFCs while applying a dummy load is an effective method for mitigating performance degradation caused by reverse current under a repetition of unprotected startup cycles.

  • PDF